
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 13: Static Semantics
18 Feb 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Type Inference Systems

• Type inference systems are a declarative formal
system used to define typings for legal programs in a
language

• Type inference systems are to type-checking:
– As regular expressions are to lexical analysis
– As context-free grammars are to syntax analysis

• Type inference systems are examples of the more
general notion: natural semantics

CS 412/413 Spring 2008 Introduction to Compilers 3

Type Judgments
• The type judgment:

|– E : T
is read:

“E is a well-typed construct of type T”

• Type checking program P is demonstrating the validity of
the type judgment |– P : T for some type T

• Sample valid type judgments for program fragments:

|– 2 : int |– 2 * (3 + 4) : int

|– true : bool |– (true ? 2 : 3) : int

CS 412/413 Spring 2008 Introduction to Compilers 4

Deriving a Type Judgment
• Consider the judgment:

|– (b ? 2 : 3) : int

• What do we need in order to decide that this is a
valid type judgment?

• b must be a bool (|– b: bool)
• 2 must be an int (|– 2: int)
• 3 must be an int (|– 3: int)

CS 412/413 Spring 2008 Introduction to Compilers 5

Hypothetical Type Judgments
• The hypothetical type judgment

A |– E : T
is read:

“In type context A expression E is well-typed with type T”

• A type context is a mapping of identifiers to types (i.e., a symbol
table)

• Sample valid hypothetical type judgments:
b: bool |– b : bool

|– 2 + 2 : int
b: bool, x: int |– (b ? 2 : x) : int
b: bool, x: int |– b : bool
b: bool, x: int |– 2 + 2 : int

• Type checking program P is demonstrating the validity of A|– P : T
for some type T and the language’s standard environment A

CS 412/413 Spring 2008 Introduction to Compilers 6

Deriving a Type Judgment

• To show:

b: bool, x: int |– (b ? 2 : x) : int

• Need to show:

b: bool, x: int |– b : bool
b: bool, x: int |– 2 : int
b: bool, x: int |– x : int

CS 412/413 Spring 2008 Introduction to Compilers 7

General Rule
• For any type environment A, expressions E, E1

and E2, the judgment

A |– (E ? E1 : E2) : T

is valid if:

A |– E : bool
A |– E1 : T
A |– E2 : T

CS 412/413 Spring 2008 Introduction to Compilers 8

Inference Rule Schema

A |– E: bool A |– E1: T A |– E2: T

A |– (E ? E1 : E2) : T

Premises (a.k.a., antecedant)

Conclusion (a.k.a., consequent)

• Holds for any choice of A, E, E1, E2, and T
•An inference rule schema defines an infinite
number of inference rules

(if-rule)

CS 412/413 Spring 2008 Introduction to Compilers 9

Axioms
• An axiom is an inference rule (schema) with no

premises

A |– true : bool

CS 412/413 Spring 2008 Introduction to Compilers 10

Why Inference Rules?
• Inference rules: compact, precise language for

specifying static semantics (can specify languages in
~20 pages vs. 100’s of pages of Java Language
Specification)

• Inference rules are to type inference systems as
productions are to context-free grammars

• Type judgments are to type inference systems as
nonterminals are to context-free grammars

• Type checking is an attempt to prove that a type
judgment is A |– E : T is valid

CS 412/413 Spring 2008 Introduction to Compilers 11

Meaning of Inference Rule
• Inference rule says:

given that the antecedent judgments are derivable
– with a uniform substitution for meta-variables (i.e., A, E1, E2)

then the consequent judgment is derivable
– with the same uniform substitution for the meta-variables

:int:int

+

E1

E1 E2

E2

:int

A |– E1 : int
A |– E2 : int

A |– E1 + E2 : int
(+)

CS 412/413 Spring 2008 Introduction to Compilers 12

Proof Tree

A1 |– (!b ? 2+3 : x) : int

A1 |– !b : bool A1 |– 2+3 : int A1 |– x : int

A1 |– b : bool A1 |– 3 : intA1 |– 2 : int

• A construct is well-typed if there exists a type
derivation for a type judgment for the construct

• Type derivation is a proof tree where all the leaves
are axioms

• Example: if A1 = b: bool, x: int, then:

CS 412/413 Spring 2008 Introduction to Compilers 13

Proof Tree, cont.
• Axioms are analogous to production with epsilon on the

right hand side

• A complete proof of A |– E : T is like a derivation of
epsilon from A |– E : T

CS 412/413 Spring 2008 Introduction to Compilers 14

Type Judgments for Statements
• Statements that have no value are said to have type

void, i.e., judgment
|– S : void

means “S is a well-typed statement with no result type”

• ML uses unit instead of void

CS 412/413 Spring 2008 Introduction to Compilers 15

While Statements

• Rule for while statements:

(while)

A |– E : bool
A |– S : T

A |– while (E) S : void

CS 412/413 Spring 2008 Introduction to Compilers 16

Assignment (Expression) Statements

(variable-assign)
A, id : T |– E : T

A, id : T |– id = E : T

(array-assign)

A |– E3 : T
A |– E2 : int

A |– E1 : array[T]

A |– E1[E2] = E3 : T

CS 412/413 Spring 2008 Introduction to Compilers 17

Sequence Statements
• Rule: A sequence of statements is well-typed if

the first statement is well-typed, and the
remaining are well-typed too:

(sequence)

A |– S1 : T1
A |– (S2 ; … ; Sn) : Tn

A |– (S1 ; S2 ; … ; Sn) : Tn

CS 412/413 Spring 2008 Introduction to Compilers 18

Identifier Declaration List
• What about variable declarations (with initialization)?
• Declarations add entries to the type environment in which

the scope of the declared variable must type check

(declaration)

A |– E : T
A, id : T |– (S2 ; … ; Sn) : T’

A |– (id : T = E ; S2 ; … ; Sn) : T’

CS 412/413 Spring 2008 Introduction to Compilers 19

Function Calls

• If expression E is a function value, it has a type
T1×T2×…×Tn→Tr

• Ti are argument types; Tr is return type
• How to type-check function call E(E1,…,En)?

(function-call)

A |– E : T1×T2×…×Tn→Tr

A |– Ei : Ti
(i∈1..n)

A |– E(E1,…,En) : Tr

CS 412/413 Spring 2008 Introduction to Compilers 20

Function Declarations

• Consider a function declaration of the form

Tr f (T1 a1,…, Tn an) { E; }

• The body of the function must type check in an
environment containing the type bindings for
the formal parameters

A, a1 : T1, ,…, an : Tn |– E : Tr
A |– Tr f (T1 a1,…, Tn an) { E; } : void(function-body)

CS 412/413 Spring 2008 Introduction to Compilers 21

But what about recursion?

• Example:

int fact(int x) {
if (x==0) return 1;
else return x * fact(x - 1);

}

• Need to prove: A |– x * fact(x-1) : int
where: A = { fact: int→int, x : int }

CS 412/413 Spring 2008 Introduction to Compilers 22

And mutual recursion?
• Example:

int f(int x) { return g(x) + 1; }
int g(int x) { return f(x) – 1; }

• Need environment containing at least
f: int → int, g: int → int

when checking both f and g

• Two-pass approach needed:
– First pass: collect all function signatures into a type

environment A
– Second pass: type-check each function declaration using this

global environment A
– How to express this with type inference schema is left as an

exercise

CS 412/413 Spring 2008 Introduction to Compilers 23

How to Check Return?

A |– E : T

A |– return E : void

• A return statement produces no value for its
containing context to use

• Does not return control to containing context

• Suppose we use type void…
• …then how to make sure T is the return type of

the current function?

(return1)

CS 412/413 Spring 2008 Introduction to Compilers 24

Put return type in environment
• Add a special entry { return_fun : T } when we start

checking the function “f”, look up this entry when we hit
a return statement.

• To check Tr f (T1 a1,…, Tn an) { return S; } in
environment A, need to check:

A, return_f : T |– E : T
A, return_f : T |– return E : void

(return)

A, a1 : T1, ,…, an : Tn, return_f : Tr |– E : Tr
A |– Tr f (T1 a1,…, Tn an) { E; } : void

(function-body)

CS 412/413 Spring 2008 Introduction to Compilers 25

Static Semantics Summary
• Type inference system = formal specification of

typing rules

• Concise form of static semantics: typing rules
expressed as inference rules

• Expression and statements are well-formed (or
well-typed) if a typing derivation (proof tree)
can be constructed using the inference rules

	CS412/CS413
	Type Inference Systems
	Type Judgments
	Deriving a Type Judgment
	Hypothetical Type Judgments
	Deriving a Type Judgment
	General Rule
	Inference Rule Schema
	Axioms
	Why Inference Rules?
	Meaning of Inference Rule
	Proof Tree
	Proof Tree, cont.
	Type Judgments for Statements
	While Statements
	Assignment (Expression) Statements
	Sequence Statements
	Identifier Declaration List
	Function Calls
	Function Declarations
	But what about recursion?
	And mutual recursion?
	How to Check Return?
	Put return type in environment
	Static Semantics Summary

