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Type Inference Systems

• Type inference systems are a declarative formal 
system used to define typings for legal programs in a 
language 

• Type inference systems are to type-checking:
– As regular expressions are to lexical analysis
– As context-free grammars are to syntax analysis

• Type inference systems are examples of the more 
general notion: natural semantics
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Type Judgments
• The type judgment:

|– E : T
is read:

“E is a well-typed construct of type T”

• Type checking program P is demonstrating the validity of 
the type judgment  |– P : T  for some type T

• Sample valid type judgments for program fragments:

|– 2 : int |– 2 * (3 + 4) : int

|– true : bool |– (true ? 2 : 3) : int
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Deriving a Type Judgment
• Consider the judgment:

|– (b ? 2 : 3) : int

• What do we need in order to decide that this is a 
valid type judgment?

• b must be a bool (|– b: bool)
• 2 must be an int (|– 2: int)
• 3 must be an int (|– 3: int)
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Hypothetical Type Judgments
• The hypothetical type judgment

A |– E : T
is read:

“In type context A expression E is well-typed with type T”

• A type context is a mapping of identifiers to types (i.e., a symbol 
table)

• Sample valid hypothetical type judgments:
b: bool  |– b : bool

|– 2 + 2 : int
b: bool, x: int |– (b ? 2 : x) : int
b: bool, x: int |– b : bool
b: bool, x: int |– 2 + 2 : int

• Type checking program P is demonstrating the validity of A|– P : T  
for some type T and the language’s standard environment A
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Deriving a Type Judgment

• To show:

b: bool, x: int |– (b ? 2 : x) : int

• Need to show:

b: bool, x: int |– b : bool
b: bool, x: int |– 2 : int
b: bool, x: int |– x : int
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General Rule
• For any type environment A, expressions E, E1

and E2, the judgment

A |– (E ? E1 : E2) : T

is valid if:

A |– E : bool
A |– E1 : T
A |– E2 : T
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Inference Rule Schema

A |– E: bool     A |– E1: T    A |– E2: T

A |– (E ? E1 : E2 ) : T

Premises (a.k.a., antecedant)

Conclusion (a.k.a., consequent)

• Holds for any choice of A, E, E1, E2, and T
•An inference rule schema defines an infinite 
number of inference rules

(if-rule)
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Axioms
• An axiom is an inference rule (schema) with no 

premises 

A |– true : bool



CS 412/413   Spring 2008 Introduction to Compilers 10

Why Inference Rules?
• Inference rules: compact, precise language for 

specifying static semantics (can specify languages in 
~20 pages vs. 100’s of pages of Java Language 
Specification)

• Inference rules are to type inference systems as 
productions are to context-free grammars

• Type judgments are to type inference systems as 
nonterminals are to context-free grammars

• Type checking is an attempt to prove that a type 
judgment is A |– E : T is valid
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Meaning of Inference Rule
• Inference rule says: 

given that the antecedent judgments are derivable
– with a uniform substitution for meta-variables (i.e., A, E1, E2)

then the consequent judgment is derivable
– with the same uniform substitution for the meta-variables

:int:int

+

E1

E1 E2

E2

:int

A |– E1 : int
A |– E2 : int

A |– E1 + E2 : int
(+)
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Proof Tree

A1 |– ( !b ? 2+3 : x ) : int

A1 |– !b : bool A1 |– 2+3 : int A1 |– x : int

A1 |– b : bool A1 |– 3 : intA1 |– 2 : int

• A construct is well-typed if there exists a type 
derivation for a type judgment for the construct

• Type derivation is a proof tree where all the leaves 
are axioms

• Example: if A1 = b: bool, x: int, then:
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Proof Tree, cont.
• Axioms are analogous to production with epsilon on the 

right hand side

• A complete proof of A |– E : T is like a derivation of 
epsilon from A |– E : T
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Type Judgments for Statements
• Statements that have no value are said to have type 

void, i.e., judgment
|– S : void

means “S is a well-typed statement with no result type”

• ML uses unit instead of void
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While Statements

• Rule for while statements:

(while)

A |– E : bool
A |– S : T

A |– while (E) S : void
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Assignment (Expression) Statements

(variable-assign)
A, id : T |– E : T

A, id : T |– id = E : T

(array-assign)

A |– E3 : T
A |– E2 : int

A |– E1 : array[T]

A |– E1[E2] = E3 : T
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Sequence Statements
• Rule: A sequence of statements is well-typed if 

the first statement is well-typed, and the 
remaining are well-typed too:

(sequence)

A |– S1 : T1
A |– (S2 ; … ; Sn) : Tn

A |– (S1 ; S2 ; … ; Sn) : Tn
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Identifier Declaration List
• What about variable declarations (with initialization)? 
• Declarations add entries to the type environment in which 

the scope of the declared variable must type check

(declaration)

A |– E : T
A, id : T |– (S2 ; … ; Sn) : T’

A |– (id : T = E ; S2 ; … ; Sn) : T’
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Function Calls

• If expression E is a function value, it has a type 
T1×T2×…×Tn→Tr

• Ti are argument types; Tr is return type
• How to type-check function call E(E1,…,En)?

(function-call)

A |– E : T1×T2×…×Tn→Tr

A |– Ei : Ti    
(i∈1..n)

A |– E(E1,…,En) : Tr
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Function Declarations

• Consider a function declaration of the form

Tr f (T1 a1,…, Tn an)  { E; }

• The body of the function must type check in an 
environment containing the type bindings for 
the formal parameters

A, a1 : T1, ,…,  an : Tn |– E : Tr
A |– Tr f (T1 a1,…, Tn an)  { E; } : void(function-body)
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But what about recursion?

• Example:

int fact(int x)  { 
if (x==0) return 1; 
else return x * fact(x - 1); 

}

• Need to prove: A |– x * fact(x-1) : int
where: A = { fact: int→int, x : int }
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And mutual recursion?
• Example:

int f(int x) { return g(x) + 1; } 
int g(int x) { return f(x) – 1; } 

• Need environment containing at least
f: int → int, g: int → int

when checking both f and g

• Two-pass approach needed:
– First pass: collect all function signatures into a type 

environment A
– Second pass: type-check each function declaration using this 

global environment A
– How to express this with type inference schema is left as an 

exercise 
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How to Check Return?

A |– E : T

A |– return E : void

• A return statement produces no value for its 
containing context to use

• Does not return control to containing context

• Suppose we use type void…
• …then how to make sure T is the return type of 

the current function?

(return1)
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Put return type in environment
• Add a special entry { return_fun : T } when we start 

checking the function “f”, look up this entry when we hit 
a return statement.

• To check Tr f (T1 a1,…, Tn an)  { return S; } in 
environment A, need to check:

A, return_f : T |– E : T     
A, return_f : T |– return E : void

(return)

A, a1 : T1, ,…,  an : Tn, return_f : Tr |– E : Tr
A |– Tr f (T1 a1,…, Tn an)  { E; } : void

(function-body)
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Static Semantics Summary
• Type inference system = formal specification of 

typing rules

• Concise form of static semantics: typing rules 
expressed as inference rules

• Expression and statements are well-formed (or 
well-typed) if a typing derivation (proof tree) 
can be constructed using the inference rules
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