CS412/CS5413

Introduction to Compilers
Tim Teitelbaum

Lecture 12: Symbol Tables
February 15, 2008

CS 412/413 Spring 2008 Introduction to Compilers

Where We Are

Ij
Abstract syntax / N\ N l
tree (AST) b0 a b
if Semantic Analysis
D ted boolean__/ N _int Y
ecorate ==
o N e I
AST int b/ int0 inta intb Errors
lvalue g?(‘)’;’rr;ﬁf)t

CS 412/413 Spring 2008 Introduction to Compilers 2

Non-Context-Free Syntax

e Programs that are correct with respect to the
language’s lexical and context-free syntactic rules
may still contain other syntactic errors

e Lexical analysis and context-free syntax analysis are
not powerful enough to ensure the correct usage of
variables, objects, functions, statements, etc.

e Non-context-free syntactic analysis is known as
semantic analysis

CS 412/413 Spring 2008 Introduction to Compilers

Incorrect Programs

e Example 1: lexical analysis does not distinguish between
different variable or function identifiers (it returns the same
token for all identifiers)

Int a; Int a;
a=1, b =1;
e« Example 2: syntax analysis does not correlate the declarations
with the uses of variables in the program:
Int a;
a=1; a=1;
« Example 3: syntax analysis does not correlate the types from the
declarations with the uses of variables:
Int a; Int a;
a=1; a=1.0;

CS 412/413 Spring 2008 Introduction to Compilers 4

Goals of Semantic Analysis

e Semantic analysis ensures that the program satisfies a set of
additional rules regarding the usage of programming
constructs (variables, objects, expressions, statements)

e Examples of semantic rules:
— Variables must be declared before being used

— A variable should not be declared multiple times in the
same scope

— In an assignment statement, the variable and the
assigned expression must have the same type

— The condition of an if-statement must have type Boolean

e Some categories of rules:
— Semantic rules regarding types
— Semantic rules regarding scopes

CS 412/413 Spring 2008 Introduction to Compilers 5

Type Information

e Type information classifies a program’s constructs
(e.g., variables, statements, expressions, functions)
Into categories, and imposes rules on their use (in
terms of those categories) with the goal of avoiding
runtime errors

variables: Int a; Integer location
expressions: (a+l) == Boolean
statements: a = 1.0; void

functions: Int pow(int n, int m) Iint X int — Int

CS 412/413 Spring 2008 Introduction to Compilers 6

Type Checking

e Type checking Is the validation of the set of type rules

e Examples:

— The type of a variable must match the type from its
declaration

— The operands of arithmetic expressions (+, *, -, /)
must have integer types; the result has integer type

— The operands of comparison expressions (==, =)
must have integer or string types; the result has
Boolean type

CS 412/413 Spring 2008 Introduction to Compilers 7

Type Checking

e More examples:

— For each assignment statement, the type of the updated
variable must match the type of the expression being
assigned

— For each call statement foo(v,, ..., v,), the type of each
actual argument v, must match the type of the
corresponding formal parameter f;, from the declaration
of function foo

— The type of the return value must match the return type
from the declaration of the function

e Type checking: next two lectures.

CS 412/413 Spring 2008 Introduction to Compilers 8

Scope Information

e Scope information characterizes the declaration of identifiers
and the portions of the program where use of each identifier is
allowed

— Example identifiers: variables, functions, objects, labels

e Lexical scope is a textual region in the program
— Statement block
— Formal argument list
— Object body
— Function or method body
— Module body
— Whole program (multiple modules)

e Scope of an identifier: the lexical scope in which it is valid

CS 412/413 Spring 2008 Introduction to Compilers 9

Scope Information

e Scope of variables in statement blocks:

{inta; ——————
{intb X < scope of variable a
¥ L. scope of variable b
} J
e InC:.

— Scope of file static variables: current file
— Scope of external variables: whole program

— Scope of automatic variables, formal parameters, and
function static variables: the function

CS 412/413 Spring 2008 Introduction to Compilers 10

Scope Information

e Scope of formal arguments of functions/methods:

'\

int factorial(int n) { scope of formal

parameter n

} J
e Scope of labels:

void f() { 2
... goto I; ...
I a =1;
... goto I; ...
}

~<+— scope of label |

CS 412/413 Spring 2008 Introduction to Compilers

11

Scope Information

e Scope of object fields and methods:

class A {))

private int X; |
public void g() { x=1;} (] [~ Scope of field x

} J J

class B extends A { 2

scope of method ¢

buublic inth() {90} /-

CS 412/413 Spring 2008 Introduction to Compilers 12

Semantic Rules for Scopes

e Main rules regarding scopes:
Rule 1: Use an identifier only if defined in enclosing scope

Rule 2: Do not declare identifiers of the same kind with
iIdentical names more than once in the same scope

e Can declare identifiers with the same name with identical
or overlapping lexical scopes if they are of different kinds

class X { int X(int X) {
int X; int X;
void X(int X) { goto X: Not
X: for(;;) fint X: Recommended!
break X; X:X=1;}
} }
¥

CS 412/413 Spring 2008 Introduction to Compilers 13

Symbol Tables

e Semantic checks refer to properties of identifiers in the
program -- their scope or type

e Need an environment to store the information about
identifiers = symbol table

e Each entry in the symbol table contains
— the name of an identifier
— additional information: its kind, its type, if it is constant, ...

NAME KIND TYPE OTHER
foo fun int X int — bool extern
m par int auto

n par Int const
tmp var bool const

CS 412/413 Spring 2008 Introduction to Compilers 14

Scope Information

e How to represent scope information in the
symbol table?

e |ldea:
e There Is a hierarchy of scopes in the program
e Use a similar hierarchy of symbol tables
e One symbol table for each scope

e Each symbol table contains the symbols
declared In that lexical scope

CS 412/413 Spring 2008 Introduction to Compilers 15

Example

int x: Global symtab

X | var int
f fun int - void
un | int — int

void f(int m) {

float X, y; func f func g
.- symtab / \ symtab
{!ntl,j; .y } m | par par | int
{intx;1l:..;} X | var float var | bool

¥ y | var | float

Int g(int n / \
l:?(It) { var | Int X | var | Int

0ol i, var | int I lab
}
CS 412/413 Spring 2008 Introduction to Compilers 16

|ldentifiers With Same Name

e The hierarchical structure of symbol tables
automatically solves the problem of resolving
name collisions (identifiers with the same name
and overlapping scopes)

e To find the declaration of an identifier that Is
active at a program point:

e Start from the current scope

e GO up in the hierarchy until you find an
Identifier with the same name, or fall

CS 412/413 Spring 2008 Introduction to Compilers 17

Int X;

void f(int m) {
float x, y;

{“i.nt L, x=1;}
{intx;l:x=2;}
}
int g(int n) {

bool t;
X = 3;

CS 412/413 Spring 2008

Example

Global symtab

X | var int
f fun int - void
un | int — int

/ \\

par int
var float t | var | bool
var | float
/ y/ AN e
var | int X | var | int
var | int I lab
=1 X =2
Introduction to Compilers 18

Catching Semantic Errors

int x;

void f(int m) {
float X, y;

{“i.nti,j; x=1;}
{intx;l:1=2;}
}

int g(int n) {
bool t;
X = 3;

}

CS 412/413 Spring 2008

> |
L Error!
X | var Int
f fun int - void
int = Iint
m par | int
X | var float t | var | bool
var | float
y/ AN 7
var | int X | var | int
var | int I lab
=1 i=2
Introduction to Compilers 19

Symbol Table Operations

e Three operations

e Create a new empty symbol table with a given parent
table

e Insert a new identifier in a symbol table (or error)
e Lookup an identifier in a symbol table (or error)

e Cannot build symbol tables during lexical analysis
e hierarchy of scopes encoded in the syntax

e Build the symbol tables:
e While parsing, using the semantic actions
e After the AST is constructed

CS 412/413 Spring 2008 Introduction to Compilers

20

Array Implementation

e Simple implementation = array
e One entry per symbol
e Scan the array for lookup, compare name at each entry

foo fun Int X int —> bool
m arg int
n arg int

tmp var bool

e Disadvantage:
e table has fixed size
e need to know In advance the number of entries

CS 412/413 Spring 2008 Introduction to Compilers 21

List Implementation

e Dynamic structure = list
e One cell per entry in the table
e Can grow dynamically during compilation

foo m n tmp

func var var Var
int X int int int bool
— bool

e Disadvantage: inefficient for large symbol tables
e need to scan half the list on average

CS 412/413 Spring 2008 Introduction to Compilers

22

Hash Table Implementation

e Efficient implementation = hash table

e |t is an array of lists (buckets)

e Uses a hashing function to map the symbol name to the
corresponding bucket: hashfunc : string — int

e Good hash function = even distribution in the buckets

— . » m|varlint| e » tmp|var|bool| °
. S n |varlint| e
. » foo|func|... |

e hashfunc(*m”) = 0, hashfunc(“foo”) = 3

CS 412/413 Spring 2008 Introduction to Compilers

23

Forward References

e Forward references = use an identifier within the scope of
Its declaration, but before it is declared

e Any compiler phase that uses the information from the
symbol table must be performed after the table is
constructed

e (Cannot type-check and build symbol table at the same time
e Example (requiring 2 passes):

class A {
int m() { return n(); }
int n() { return 1; }

}

CS 412/413 Spring 2008 Introduction to Compilers 24

Summary

Semantic checks ensure the correct usage of variables,
objects, expressions, statements, functions, and labels In
the program

Scope semantic checks ensure that identifiers are correctly
used within the scope of their declaration

Type semantic checks ensures the type consistency of
various constructs in the program

Symbol tables: a data structure for storing information
about symbols in the program

e Used in semantic analysis and subsequent compiler stages

Next time: type-checking

CS 412/413 Spring 2008 Introduction to Compilers 25

	CS412/CS413
	Where We Are
	Non-Context-Free Syntax
	Incorrect Programs
	Goals of Semantic Analysis
	Type Information
	Type Checking
	Type Checking
	Scope Information
	Scope Information
	Scope Information
	Scope Information
	Semantic Rules for Scopes
	Symbol Tables
	Scope Information
	Example
	Identifiers With Same Name
	Example
	Catching Semantic Errors
	 Symbol Table Operations
	 Array Implementation
	 List Implementation
	 Hash Table Implementation
	 Forward References
	 Summary

