CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 10: LR Parsing
February 11, 2008

LR(0) Parsing Summary

- $\operatorname{LR}(0)$ item $=$ a production with a dot in RHS
- $\operatorname{LR}(0)$ state $=$ set of $\operatorname{LR}(0)$ items valid for a set of viable prefixes
- Compute LR(0) states and build DFA:
- Start state: $\mathrm{V}(\varepsilon)=\left\{\left[\mathrm{S}^{\prime} \rightarrow . \mathrm{S}\right]\right\} \downarrow^{*}$
- Other states: $\mathrm{V}(\alpha \mathrm{X})=\mathrm{V}(\alpha) \rightarrow_{x} \downarrow^{*}$
- Build the LR(0) parsing table from the DFA
- Use the LR(0) parsing table to determine whether to reduce or to shift

LR(0) Limitations

- An LR(0) machine only works if each state with a reduce action has only one possible reduce action and no shift action
- With some grammars, construction gives states with shift/reduce or reduce/reduce conflicts
- Need to use look-ahead to choose

shift /reduce

$$
\begin{aligned}
& {\left[\mathrm{L} \rightarrow \mathrm{~L}, \mathrm{~S}_{\mathrm{E}}\right]} \\
& {[\mathrm{S} \rightarrow \mathrm{~S}, \mathrm{~L} \text {] }}
\end{aligned}
$$

reduce / reduce
[L \rightarrow S,L.]
$[\mathrm{L} \rightarrow \mathrm{S}$.

LR(0) Parsing Table

A Non-LR(0) Grammar

- Grammar for addition of numbers:

$$
\begin{aligned}
& S \rightarrow S+E \mid E \\
& E \rightarrow \text { num }
\end{aligned}
$$

- Left-associative version is $\operatorname{LR}(0)$
- Right-associative version is not LR(0)

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{E}+\mathrm{S} \mid \mathrm{E} \\
& \mathrm{E} \rightarrow \text { num }
\end{aligned}
$$

LR(0) Parsing Table

What to do in state 2: shift or reduce?

	num	+	ε	E

SLR(1) Parsing

- SLR Parsing = easy extension of LR(0)
- For each reduction $A \rightarrow \beta$, look at the next symbol c
- Apply reduction only if c is in FOLLOW(A), or $c=\varepsilon$ and $S \Rightarrow * \gamma A$
- SLR parsing table eliminates some conflicts
- Same as LR(0) table except reduction rows
- Adds reductions $A \rightarrow \beta$ only to columns of symbols in FOLLOW(A), or to column ε if $S \Rightarrow^{*} \gamma \mathrm{~A}$
- Example:

FOLLOW(S) $=\{ \}$
but $\mathrm{S} \Rightarrow{ }^{*} \gamma \mathrm{E}$

SLR Parsing Table

- Reductions do not fill entire rows
- Otherwise, same as LR(0)

SLR(k)

- Use the $\operatorname{LR}(0)$ machine states as rows of table
- Let Q be a state and u be a lookahead string
- Action $(\mathrm{Q}, \mathrm{u})=$ shift $\operatorname{Goto}(\mathrm{Q}, \mathrm{b})$
if Q contains an item of the form $\left[A \rightarrow \beta_{1} \cdot b \beta_{3}\right]$, with $u \in$ $\operatorname{FIRST}_{\mathrm{k}}\left(\mathrm{b} \beta_{3} \mathrm{FOLLOW}_{\mathrm{k}}(\mathrm{A})\right)$
- $\operatorname{Action}(\mathrm{Q}, \mathrm{u})=\underline{\text { accept }}$
if $\mathrm{Q}=\left\{\left[\mathrm{S}^{\prime} \rightarrow \mathrm{S}.\right]\right\}$ and $u=\varepsilon$
- Action $(\mathrm{Q}, \mathrm{u})=\underline{\text { reduce } \mathrm{i}}$
if Q contains the item $[A \rightarrow \beta$.], where $A \rightarrow \beta$ is the ith production of G and $u \in \operatorname{FOLLOW}_{k}(A)$, or $u=\varepsilon$ and $S \Rightarrow * \gamma A$
- Action(Q,u) = error otherwise
- G is $\operatorname{SLR}(k)$ iff the Action function given above is single-valued for all Q and u , i.e, there are no shift-reduce or reduce-reduce conflicts.

LR(1) Parsing

- Get as much power as possible out of 1 lookahead symbol parsing table
- LR(1) grammar = recognizable by a shift/reduce parser with 1-symbol look-ahead
- LR(1) parsing uses concepts similar to LR(0)
- Parser states $=$ sets of items
- LR(1) item $=\operatorname{LR}(0)$ item + look-ahead symbol following the production

LR(0) item :

$$
[\mathrm{S} \rightarrow . \mathrm{S}+\mathrm{E} \text {] }
$$ LR(1) item :

$$
\left[\begin{array}{ll}
\text { S } \rightarrow \text {. S+E } & +]
\end{array}\right.
$$

LR(1) States

- $\operatorname{LR}(1)$ state $=$ set of $\operatorname{LR}(1)$ items
- $\operatorname{LR}(1)$ item $=\left[\begin{array}{ll}A \rightarrow \alpha_{.} \beta & b] \text {, where } b \text { in } \Sigma \cup\{\varepsilon\}\end{array}\right.$
- Meaning: α already matched at top of the stack; next expect to see β b
- Shorthand notation

$$
\left[A \rightarrow \alpha, B \quad b_{1}, \ldots, b_{n}\right]
$$

means:
$\left[\begin{array}{cc}A \rightarrow \alpha \cdot \beta & \left.b_{1}\right]\end{array}\right.$

$$
\begin{array}{cc}
{[\mathrm{S} \rightarrow \mathrm{~S} .+\mathrm{E}} & +, \varepsilon] \\
{[\mathrm{S} \rightarrow \mathrm{~S}+. \mathrm{E}} & \text { num }]
\end{array}
$$

$\left[\begin{array}{cc}A \rightarrow \alpha \cdot \beta & b_{n}\end{array}\right]$

- Extend closure and goto operations

LR(1) Closure

- LR(1) closure operation on set of items S
- For each item in S:

$$
[A \rightarrow \alpha . B \beta \quad b]
$$

and for each production $\mathrm{B} \rightarrow \boldsymbol{\gamma}$, add the following item to S :
[B $\rightarrow \gamma \operatorname{FIRST}(\beta b)]$, or
$[B \rightarrow . \gamma \quad \varepsilon]$ if $\operatorname{FIRST}(\beta b)=\{ \}$

- Repeat until nothing changes
- Similar to LR(0) closure, but also keeps track of the look-ahead symbol

LR(1) Start State

- Initial state: start with [S' \rightarrow.S ε], then apply the closure operation
- Example: sum grammar

LR(1) Goto Operation

- $\operatorname{LR}(1)$ goto operation = describes transitions between LR(1) states
- Algorithm: for a state S and a symbol Y
$-S^{\prime}=\left\{\left[A \rightarrow \alpha Y_{1} \beta\right.\right.$ b] | [A $\rightarrow \alpha_{\text {. }} \mathrm{Y} \beta$ b] $\left.\in \mathrm{S}\right\}$
- Goto(S, Y) $=$ Closure(S')

Goto($\mathrm{S}_{1},{ }^{\prime}+$ ')
Closure($\{[\mathrm{S} \rightarrow \mathrm{E}+. \mathrm{S} \quad \varepsilon]\}$)

LR(1) DFA Construction

- If $S^{\prime}=$ Goto(S, X) then add an edge labeled X from S to S^{\prime}

$\begin{array}{\|lr} \hline[\mathrm{S} \rightarrow \mathrm{~S} & \varepsilon] \\ \mathrm{LS} \rightarrow \text {. } \mathrm{E}+\mathrm{S} & \varepsilon] \\ {[\mathrm{S} \rightarrow \mathrm{E}} & \varepsilon] \\ {[\mathrm{E} \rightarrow \text {.num }} & +, \varepsilon] \end{array}$		S	$\left[\mathrm{S}^{\prime} \rightarrow \mathrm{S} . \quad \varepsilon\right]$	
		num	$[E \rightarrow$ num.	+, ε]
E				num
$[S \rightarrow$ E. + S	ع]	+	[S \rightarrow E+.S	ع]
$\left[S \rightarrow E_{\text {\% }}\right.$	$\varepsilon]$	E	[S \rightarrow.E+S	ع]
			$[\mathrm{S} \rightarrow$.E	$\varepsilon]$
$[S \rightarrow E$.	+, ε]	S	$[E \rightarrow$.num	+, ε]

LR(1) Reductions

- Reductions correspond to LR(1) items of the form $[A \rightarrow \beta$. $\quad x]$

$\begin{aligned} & {\left[\mathrm{S}^{\prime} \rightarrow . \mathrm{S}\right.} \\ & {[\mathrm{S} \rightarrow . \mathrm{E}+\mathrm{S}} \end{aligned}$	$\begin{aligned} & \hline \varepsilon] \\ & \varepsilon] \end{aligned}$	S	$\left[\mathrm{S}^{\prime} \rightarrow\right.$ S.	$\varepsilon]$
[S \rightarrow. E	ع]	num		
[$\mathrm{E} \rightarrow$.num	+, ε]		[$\mathrm{E} \rightarrow$ num	.,$+ \varepsilon]$
E				num
[S \rightarrow E.+S	ع]	$+$	$[S \rightarrow E+. S$	ع]
[S \rightarrow E.	$\varepsilon]$	E	$[S \rightarrow$.E+S	ع]
			$[S \rightarrow$.E	ع]
[S \rightarrow E.	$+, \varepsilon]$	S	$[E \rightarrow$.num	+, $¢$]

LR(1) Parsing Table Construction

- Same as construction of LR(0) parsing table, except for reductions
- If $[A \rightarrow \beta$. $b] \in$ state Q, then:

Action(Q, b) is Reduce $(\mathrm{A} \rightarrow \boldsymbol{\beta})$

LR(1) Parsing Table Example

Fragment of the Parsing table:

LR(1) but not SLR(1)

- Let G have productions
$\mathrm{S} \rightarrow \mathrm{aAb} \mid \mathrm{Ac}$
$\mathrm{A} \rightarrow \mathrm{a} \mid \varepsilon$
- $V(a)=\{$

LALR(1) Grammars

- Problem with LR(1): too many states
- LALR(1) Parsing (Look-Ahead LR)
- Construct LR(1) DFA and then merge any two LR(1) states whose items are identical except look-ahead
- Results in smaller parser tables
- Theoretically less powerful than LR(1)

$$
\left.\begin{array}{ll}
{[S \rightarrow \text { id. }} & +
\end{array}\right]+\left[\begin{array}{ll}
{[S \rightarrow \text { id. }} & \varepsilon
\end{array}\right]=?
$$

- LALR(1) Grammar = a grammar whose LALR(1) parsing table has no conflicts

Classification of Grammars

$$
\begin{aligned}
\mathrm{LR}(\mathrm{k}) & \subseteq \mathrm{LR}(\mathrm{k}+1) \\
\mathrm{LL}(\mathrm{k}) & \subseteq \mathrm{LL}(\mathrm{k}+1) \\
\mathrm{LL}(\mathrm{k}) & \subseteq \mathrm{LR}(\mathrm{k})
\end{aligned}
$$

$$
\operatorname{LR}(0) \subseteq \operatorname{SLR}(1)
$$

$$
\operatorname{LALR}(1) \subseteq \operatorname{LR}(1)
$$

Automate the Parsing Process

- Can automate:
- The construction of LR parsing tables
- The construction of shift-reduce parsers based on these parsing tables
- Automatic parser generators: yacc, bison, CUP
- LALR(1) parser generators
- Not much difference compared to LR(1) in practice
- Smaller parsing tables than LR(1)
- Augment LALR(1) grammar specification with declarations of precedence, associativity
- output: LALR(1) parser program

Associativity

$S \rightarrow S+E \mid E$
 $\mathrm{E} \rightarrow$ num

What happens if we run this grammar through LALR construction?

Shift/Reduce Conflict

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \\
& \mathrm{E} \rightarrow \text { num }
\end{aligned}
$$

$$
\begin{array}{lr}
{\left[\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}_{1}\right.} & +] \\
{\left[\mathrm{E} \rightarrow \mathrm{E}_{1}+\mathrm{E}\right.} & +, \varepsilon]
\end{array}
$$

shift/reduce conflict
shift: $1+(2+3)$
reduce: $(1+2)+3$
$1+2+3$
ヘ

Grammar in CUP

nonterminal E; terminal PLUS, LPAREN... precedence left PLUS;

"when shifting a ‘ + ' conflicts with reducing a production, choose reduce"

E::=E PLUS E
 | LPAREN E RPAREN
 | NUMBER;

Precedence

- CUP can also handle operator precedence

$$
\begin{aligned}
& E \rightarrow E+E \mid T \\
& \mathrm{~T} \rightarrow \mathrm{~T} \times \mathrm{T} \mid \text { num | (E) } \\
& \text { ~ } \\
& E \rightarrow E+E \mid E \times E \\
& \text { | num | (E) }
\end{aligned}
$$

Conflicts without Precedence

$$
\begin{array}{rl}
E \rightarrow E+E & E \times E \\
\mid \text { num } & (E)
\end{array}
$$

$$
\left.\begin{array}{lll}
{[\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{E}} & \ldots .
\end{array}\right]
$$

$$
\left.\begin{array}{lll}
{[\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}} & \times
\end{array}\right]
$$

Predecence in CUP

precedence left PLUS;
precedence left TIMES; // TIMES > PLUS
E $::=$ E PLUS E \| E TIMES E \| ...
RULE: in conflict, choose reduce if last terminal of production has higher precedence than symbol to be shifted; choose shift if vice-versa. In tie, use associativity (left or right) given by precedence rule

$$
\left.\begin{array}{ll}
{[\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{E}} & \ldots] \\
{[\mathrm{E} \rightarrow \mathrm{EXE} .} & +]
\end{array}\right]
$$

reduce $\mathrm{E} \rightarrow \mathrm{E} \times \mathrm{E}$

$$
\begin{aligned}
& {\left[\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}_{\mathrm{E}}\right.} \\
& {\left[\mathrm{E} \rightarrow \mathrm{E}_{\mathrm{r}} \times \mathrm{E}\right.}
\end{aligned}
$$

$$
\text { Shift } \times
$$

Summary

- Look-ahead information makes SLR(1), LALR(1), LR(1) grammars expressive
- Automatic parser generators support LALR(1) grammars
- Precedence, associativity declarations simplify grammar writing

