CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 9: LR Parsing
February 9, 2007

LR(k) Grammars

- $\mathrm{LR}(\mathrm{k})=$ Left-to-right scanning, Right-most derivation, k look-ahead characters
- Main cases: LR(0), LR(1), SLR(k), and LALR(1)
- Parsers for LR(0) Grammars:
- Know whether to shift or reduce without consulting the lookahead symbol
- Give intuition and techniques relevant for creating parsers for all grammar classes to be considered

Building LR(0) Parsing Tables

- To build the parsing table:
- Define states of the parser
- Build a DFA to describe the transitions between states
- Use the DFA to build the parsing table

Viable Prefix

- γ is a viable prefix for G iff there is some derivation

$$
S \Rightarrow^{*} \alpha A z \Rightarrow \alpha \beta z
$$

where γ is a prefix of $\alpha \beta$

- $\{\gamma \mid \gamma$ is a viable prefix of G$\}$ is a regular language, i.e., it can be recognized by a DFA known as the Canonical LR(0) Machine

Viable Prefix (Informally)

- γ is a viable prefix for G if it is a prefix of a sentential form derived from S that does not extend past the end of the handle of the sentential form.

LR(0) Items

- An $\operatorname{LR}(0)$ item for G is a triple $\left\langle A, \beta_{1}, \beta_{2}\right\rangle$
such that $A \rightarrow \beta_{1} \beta_{2}$ is a production of G. The item $\left\langle A, \beta_{1}, \beta_{2}\right\rangle$ is denoted by $\left[A \rightarrow \beta_{1} . \beta_{2}\right]$

Validity of LR(0) Items

- The item $\left[\mathrm{A} \rightarrow \beta_{1} . \beta_{2}\right]$ is valid for viable prefix $\alpha \beta_{1}$ iff $S \Rightarrow{ }^{*} \alpha A z \Rightarrow \alpha \beta_{1} \beta_{2} z$
- Note:
- β_{1} may be ε
- β_{2} may be ε
- For any viable prefix α, let $\mathrm{V}(\alpha)$ denote the set of $\operatorname{LR}(0)$ items that are valid for α.

Sets of Valid Items

- Observations
- There are only finitely many distinct LR(0) items for a given G.
- Thus, there are only finitely many sets of LR(0) items for G.
- Sets of valid items for viable prefixes of G will serve as the states of a DFA, i.e., the canonical LR(0) machine.

Relation \downarrow

- The relation \downarrow on $\operatorname{LR}(0)$ items is defined by $I \downarrow I^{\prime}$ iff $\exists \mathrm{A}$, B, $\beta_{1}, \beta_{2}, \beta_{3}$ such that

$$
\begin{aligned}
& \mathrm{I}=\left[\mathrm{A} \rightarrow \beta_{1} \cdot \mathrm{~B} \beta_{3}\right] \\
& \mathrm{I}^{\prime}=\left[\mathrm{B} \rightarrow . \beta_{2}\right]
\end{aligned}
$$

- Lemma. Let I , I ' be as above. $\mathrm{If} \mathrm{I} \in \mathrm{V}\left(\alpha \beta_{1}\right)$ and $\mathrm{I} \downarrow \mathrm{I}^{\prime}$, then $\mathrm{I}^{\prime} \in$
$\mathrm{V}\left(\alpha \beta_{1}\right)$.
- $\mathrm{I} \in \mathrm{V}\left(\alpha \beta_{1}\right)$ implies $\mathrm{S} \Rightarrow * \alpha \mathrm{Az} \Rightarrow \alpha \beta_{1} \mathrm{~B} \beta_{3} z$
- Assuming G has no useless productions, $\exists y$ such that $\beta_{3} \Rightarrow * y$
- Thus, $\mathrm{S} \Rightarrow{ }^{*} \alpha \mathrm{Az} \Rightarrow \alpha \beta_{1} \mathrm{~B} \beta_{3} \mathrm{z} \Rightarrow^{*} \alpha \beta_{1} \mathrm{Byz} \Rightarrow \alpha \beta_{1} \beta_{2} \mathrm{yz}$
- Thus, I' (i.e., $\left.\left[B \rightarrow . \beta_{2}\right]\right) \in V\left(\alpha \beta_{1}\right)$

Relation \rightarrow_{x}

- For any $X \in(V \cup \Sigma)$, the relation \rightarrow_{x} is defined by $I \rightarrow_{x} I$ ' iff $\exists \mathrm{A}, \beta_{1}, \beta_{3}$ such that

$$
\begin{aligned}
& I=\left[A \rightarrow \beta_{1}: X \beta_{3}\right] \\
& I^{\prime}=\left[A \rightarrow \beta_{1} X \beta_{3}\right]
\end{aligned}
$$

- Lemma. Let I , I ' be as above. $\mathrm{If} \mathrm{I} \in \mathrm{V}\left(\alpha \beta_{1}\right)$ then $\mathrm{I}^{\prime} \in \mathrm{V}\left(\alpha \beta_{1} \mathrm{X}\right)$.
$-\mathrm{I}=\left[\mathrm{A} \rightarrow \beta_{1} \times \times \beta_{3}\right] \in \mathrm{V}\left(\alpha \beta_{1}\right)$ implies

$$
S \Rightarrow{ }^{*} \alpha A z \Rightarrow \alpha \beta_{1} \times \beta_{3} z
$$

which by definition means I' $\left(=\left[A \rightarrow \beta_{1} X^{\prime} \beta_{3}\right]\right) \in \mathrm{V}\left(\alpha \beta_{1} \mathrm{X}\right)$

Technical Details

- Start symbol never appears on RHS
- It is convenient if the start symbol never appears on the RHS of any production.
- Given $G=\langle V, \Sigma, S, \rightarrow\rangle$, let $S^{\prime} \notin V$ and

$$
\mathrm{G}^{\prime}=\left\langle\mathrm{V}, \mathrm{~L}, \mathrm{~S}^{\prime}, \rightarrow \cup\left\{\mathrm{S}^{\prime} \rightarrow \mathrm{S}\right\}\right\rangle
$$

- Assume that the grammars we work with have the form of G'.
- If S is a set and R is a relation, then $S R=\{y \mid x \in S$ and $\langle x, y\rangle \in R\}$
$S R$ is called S mapped by R

$\mathrm{V}(\varepsilon)$, the base case

- Let S^{\prime} be the start symbol of G. Then
$-\mathrm{V}(\varepsilon)=\left\{\left[\mathrm{S}^{\prime} \rightarrow\right.\right.$. S$\left.]\right\} \downarrow^{*}$
(i.e., the "initial item" of G $\left\{\left[S^{\prime} \rightarrow\right.\right.$.S $\left.]\right\}$ mapped by the reflexive transitive closure of the \downarrow relation.)
- If Q is a set of items, we call $\mathrm{Q} \downarrow^{*}$ the closure(Q).

$\mathrm{V}(\alpha \mathrm{X})$, the inductive case

- For any α and $\mathrm{X}, \mathrm{V}(\alpha \mathrm{X})=\mathrm{V}(\alpha) \rightarrow_{X^{*}} \downarrow^{*}$
- For any set Q of items, we call $\mathrm{Q} \rightarrow_{\mathrm{x}} \downarrow^{*}$ the X successor of Q , or Goto(Q, X).

Canonical LR(0) Machine

- States: Sets of valid items
- Transition function: Goto, as defined above.
- Algorithm: To compute all sets of valid items

$$
\begin{aligned}
& \text { STATES }:=\mathrm{V}(\varepsilon) \\
& \text { while } \exists \mathrm{Q} \in \mathrm{STATES}, \mathrm{X} \in(\mathrm{~V} \cup \Sigma) \text { such that } \\
& \text { Goto }(\mathrm{Q}, \mathrm{X}) \notin \text { STATES } \\
& \text { do STATES }:=\text { STATES } \cup\{\operatorname{Goto}(\mathrm{Q}, \mathrm{X})\}
\end{aligned}
$$

- Clearly, this terminates, as STATES is bounded above by the Powerset(LR(0) items)

LR(0) Grammar

- Nested lists:

$$
\begin{aligned}
& \mathrm{S} \rightarrow(\mathrm{~L}) \mid \text { id } \\
& \mathrm{L} \rightarrow \mathrm{~S} \mid \mathrm{L}, \mathrm{~S}
\end{aligned}
$$

- Sample strings
- (a, b, c)
- ((a,b),(c,d),(e,f))
- (a,(b,c,d),((f,g)))

Parse tree for
($\mathrm{a},(\mathrm{b}, \mathrm{c}$), d)

Start State

> | Grammar |
| :--- |
| $S \rightarrow(L) \mid$ id |
| $L \rightarrow S \mid L, S$ |

- Start state

$$
\begin{aligned}
-\mathrm{V}(\varepsilon) & =\left\{\left[\mathrm{S}^{\prime} \rightarrow . \mathrm{S}\right]\right\}^{\downarrow} \\
& =\left\{\left[\mathrm{S}^{\prime} \rightarrow . \mathrm{S}\right][\mathrm{S} \rightarrow .(\mathrm{L})],[\mathrm{S} \rightarrow . \mathrm{id}]\right\}
\end{aligned}
$$

- Closure of a parser state Q:
- Start with Closure(Q) := Q
- Then for each item in Q:

$$
A \rightarrow \alpha . B \beta
$$

add the items for all the productions $\mathrm{B} \rightarrow \gamma$ to the closure of Q :

$$
B \rightarrow \cdot \gamma
$$

Goto: Terminal Symbols

In new state, include all items that have appropriate input symbol just after dot, advance dot in those items, and take closure.

Goto: Nonterminal Symbols

(same algorithm for transitions on nonterminals)

Reduce States

Full LR(0) Machine

Parsing Example: ((a),b)

derivation	stack	input
$((a), b) \Leftarrow$	1	$((a), b)$
$((a), b) \Leftarrow$	13	$(a), b)$
$((a), b) \Leftarrow$	133	a), b)
$((a), b) \Leftarrow$	1332	$), b)$
$((S), b) \Leftarrow$	1337	$), b)$
$((L), b) \Leftarrow$	1335	$), b)$
$((L), b) \Leftarrow$	13356	$, b)$
$(S, b) \Leftarrow$	137	$, b)$
$(L, b) \Leftarrow$	135	$, b)$
$(L, b) \Leftarrow$	1358	b)
$(L, b) \Leftarrow$	13582	$)$
$(L, S) \Leftarrow$	13589	$)$
$(L) \Leftarrow$	135	
$(L) \Leftarrow$	1356	
S	14	

Grammar:
$\mathrm{S} \rightarrow(\mathrm{L}) \mid$ id
$\mathrm{L} \rightarrow \mathrm{S} \mid \mathrm{L}, \mathrm{S}$
action
shift, goto 3
shift, goto 3
shift, goto 2
reduce $\mathrm{S} \rightarrow$ id
reduce $L \rightarrow S$
shift, goto 6
reduce $S \rightarrow$ (L)
reduce $L \rightarrow S$
shift, goto 8
shift, goto 9
reduce $\mathrm{S} \rightarrow$ id
reduce $L \rightarrow L$, S
shift, goto 6
reduce $\mathrm{S} \rightarrow$ (L)
done

Reductions

- On reducing $B \rightarrow \beta$ with stack $\alpha \beta_{2}$:
- pop | β | states off stack
- This reveals topmost state Q , which contains an item $\left[\mathrm{A} \rightarrow \beta_{1} \cdot \mathrm{~B} \beta_{3}\right.$]
- push state Goto(Q,B) onto the stack

LR(0) Parsing Table

LR(0) Summary

- LR(0) parsing recipe:

Start with an LR(0) grammar Compute LR(0) states and build DFA: Build the LR(0) parsing table from the DFA

LR(0) Limitations

- An LR(0) machine only works if each state with a reduce action has only one possible reduce action and no shift action
- With more complex grammars, construction gives states with shift/reduce or reduce/reduce conflicts
- Need to use look-ahead to choose

shift /reduce

reduce / reduce

$$
\begin{aligned}
& {[\mathrm{L} \rightarrow \mathrm{~S}, \mathrm{~L} .]} \\
& {[\mathrm{L} \rightarrow \mathrm{~S} .]}
\end{aligned}
$$

A Non-LR(0) Grammar

- Grammar for addition of numbers:

$$
\begin{aligned}
& S \rightarrow S+E \mid E \\
& E \rightarrow \operatorname{num} \mid(S)
\end{aligned}
$$

- Left-associative is LR(0)
- Right-associative version is not LR(0)

$$
\begin{aligned}
& S \rightarrow E+S \mid E \\
& E \rightarrow \operatorname{num} \mid(S)
\end{aligned}
$$

LR(0) Parsing Table

SLR(k)

- Use the $\operatorname{LR}(0)$ machine states as rows of table
- Let Q be a state and u be a lookahead string
- $\operatorname{Action}(\mathrm{Q}, \mathrm{u})=$ shift $\operatorname{Goto}(\mathrm{Q}, \mathrm{b})$
if Q contains an item of the form $\left[A \rightarrow \beta_{1} \cdot \mathrm{~b} \beta_{3}\right]$, with $u \in \operatorname{FIRST}_{k}\left(\mathrm{~b} \beta_{3}\right.$ $\operatorname{FOLLOW}_{\mathrm{k}}(\mathrm{A})$)
- $\operatorname{Action}(\mathrm{Q}, \mathrm{u})=\underline{\text { accept }}$ if $\mathrm{Q}=\left\{\left[\mathrm{S}^{\prime} \rightarrow \mathrm{S}\right]\right\}$ and $\mathrm{u}=\varepsilon$
- Action $(\mathrm{Q}, \mathrm{u})=\underline{\text { reduce } \mathrm{i}}$
if Q contains the item $[A \rightarrow \beta$.], where $A \rightarrow \beta$ is the ith production of G and $u \in \operatorname{FOLLOW}_{k}(A)$
- Action(Q,u) = error otherwise
- G is $\operatorname{SLR}(k)$ iff the Action function given above is single-valued for all Q and u, i.e, there are no shift-reduce or reduce-reduce conflicts.

Next Time

- Learn about other kinds of LR parsing:
- SLR = improved LR(0)
- LR(1) $=1$ character lookahead
- $\operatorname{LALR}(1)=$ Look-Ahead $\operatorname{LR}(1)$
- Basic ideas are the same as for $\operatorname{LR}(0)$
- Parser states with LR items
- DFA with transitions between parser states
- Parser table with shift/reduce/goto actions

