CS412/CS413

Introduction to Compilers Tim Teitelbaum

Lecture 9: LR Parsing February 9, 2007

CS 412/413 Spring 2007

LR(k) Grammars

- LR(k) = Left-to-right scanning, Right-most derivation, k look-ahead characters
- Main cases: LR(0), LR(1), SLR(k), and LALR(1)
- Parsers for LR(0) Grammars:
 - Know whether to shift or reduce without consulting the lookahead symbol
 - Give intuition and techniques relevant for creating parsers for all grammar classes to be considered

Building LR(0) Parsing Tables

- To build the parsing table:
 - Define states of the parser
 - Build a DFA to describe the transitions between states
 - Use the DFA to build the parsing table

Viable Prefix

γ is a viable prefix for G iff there is some derivation

 $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta z$

where γ is a prefix of $\alpha\beta$

 {γ | γ is a viable prefix of G} is a regular language, i.e., it can be recognized by a DFA known as the Canonical LR(0) Machine

Viable Prefix (Informally)

 γ is a viable prefix for G if it is a prefix of a sentential form derived from S that does not extend past the end of the handle of the sentential form.

LR(0) Items

• An LR(0) item for G is a triple $\langle A, \beta_1, \beta_2 \rangle$ such that $A \rightarrow \beta_1 \beta_2$ is a production of G. The item $\langle A, \beta_1, \beta_2 \rangle$ is denoted by $[A \rightarrow \beta_1.\beta_2]$

Validity of LR(0) Items

- The item $[A \rightarrow \beta_1.\beta_2]$ is valid for viable prefix $\alpha \beta_1$ iff $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta_1 \beta_2 z$
- Note:
 - $\beta_1 \, \text{may be} \, \epsilon$
 - $\beta_2\,\text{may}$ be ϵ
- For any viable prefix α , let V(α) denote the set of LR(0) items that are valid for α .

CS 412/413 Spring 2007

Sets of Valid Items

- Observations
 - There are only finitely many distinct LR(0) items for a given G.
 - Thus, there are only finitely many sets of LR(0) items for G.
- Sets of valid items for viable prefixes of G will serve as the states of a DFA, i.e., the canonical LR(0) machine.

Relation \downarrow

The relation ↓ on LR(0) items is defined by I ↓ I' iff ∃ A,
 B, β₁, β₂, β₃ such that

 $\mathsf{I} = [\mathsf{A} \to \beta_1.\mathsf{B}\beta_3]$

 $\mathsf{I}' = [\mathsf{B} \to .\beta_2]$

- Lemma. Let I, I' be as above. If $I \in V(\alpha\beta_1)$ and $I \downarrow I'$, then $I' \in V(\alpha\beta_1)$.
 - $I \in V(\alpha\beta_1)$ implies $S \Rightarrow^* \alpha Az \Rightarrow \alpha\beta_1 B\beta_3 z$
 - Assuming G has no useless productions, $\exists y \text{ such that } \beta_3 \Rightarrow^* y$
 - Thus, $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta_1 B \beta_3 z \Rightarrow^* \alpha \beta_1 B yz \Rightarrow \alpha \beta_1 \beta_2 yz$
 - Thus, I' (i.e., $[B \rightarrow .\beta_2]) \in V(\alpha\beta_1)$

CS 412/413 Spring 2007

Relation \rightarrow_x

- For any $X \in (V \cup \Sigma)$, the relation \rightarrow_x is defined by $I \rightarrow_x I'$ iff $\exists A, \beta_1, \beta_3$ such that
 - $I = [A \rightarrow \beta_1 . X \beta_3]$ $I' = [A \rightarrow \beta_1 X . \beta_3]$
- Lemma. Let I, I' be as above. If $I \in V(\alpha\beta_1)$ then $I' \in V(\alpha\beta_1X)$.

-
$$I = [A \rightarrow \beta_1 . X \beta_3] \in V(\alpha \beta_1)$$
 implies
 $S \Rightarrow^* \alpha Az \Rightarrow \alpha \beta_1 X \beta_3 z$

which by definition means I' (= $[A \rightarrow \beta_1 X.\beta_3]$) $\in V(\alpha\beta_1 X)$

CS 412/413 Spring 2007

Technical Details

- Start symbol never appears on RHS
 - It is convenient if the start symbol never appears on the RHS of any production.
 - Given G = $\langle V, \Sigma, S, \rightarrow \rangle$, let S' \notin V and

 $\mathsf{G'} = \langle \mathsf{V}, \Sigma, \mathsf{S'}, \rightarrow \cup \{\mathsf{S'} {\rightarrow} \mathsf{S}\} \rangle$

- Assume that the grammars we work with have the form of G'.
- If S is a set and R is a relation, then SR={y| x∈S and ⟨x,y⟩ ∈ R}
 SR is called S mapped by R

$V(\varepsilon)$, the base case

• Let S' be the start symbol of G. Then

 $- V(\varepsilon) = \{ [S' \rightarrow .S] \} \downarrow^*$

(i.e., the "initial item" of G $\{[S' \rightarrow .S]\}$ mapped by the reflexive transitive closure of the \downarrow relation.)

• If Q is a set of items, we call $Q \downarrow^*$ the closure(Q).

V(α X), the inductive case

- For any α and X, $V(\alpha X) = V(\alpha) \rightarrow_{x} \downarrow^{*}$
- For any set Q of items, we call $Q \rightarrow_x \downarrow^*$ the X-successor of Q, or Goto(Q,X).

Canonical LR(0) Machine

- <u>States</u>: Sets of valid items
- <u>Transition function</u>: Goto, as defined above.
- <u>Algorithm</u>: To compute all sets of valid items

STATES := $V(\varepsilon)$ while $\exists \ Q \in STATES, \ X \in (V \cup \Sigma)$ such that Goto(Q,X) \notin STATES do STATES := STATES $\cup \{ Goto(Q,X) \}$

 Clearly, this terminates, as STATES is bounded above by the Powerset(LR(0) items)

LR(0) Grammar

• Nested lists:

 $\begin{array}{l} \mathsf{S} \rightarrow (\mathsf{L}) \mid \mathsf{id} \\ \mathsf{L} \rightarrow \mathsf{S} \mid \mathsf{L}, \mathsf{S} \end{array}$

- Sample strings
 - (a,b,c)
 - ((a,b),(c,d),(e,f))
 - (a,(b,c,d),((f,g)))

Parse tree for (a, (b,c), d)

CS 412/413 Spring 2007

Start State

• Start state

$$- V(\varepsilon) = \{ [S' \rightarrow .S] \} \downarrow^* \\ = \{ [S' \rightarrow .S] [S \rightarrow .(L)], [S \rightarrow .id] \}$$

- Closure of a parser state Q:
 - Start with Closure(Q) := Q
 - Then for each item in Q:

 $A \rightarrow \alpha.B\beta$

add the items for all the productions $B\to\gamma$ to the closure of Q:

 $B \rightarrow . \ \gamma$

Goto: Terminal Symbols

In new state, include all items that have appropriate input symbol just after dot, advance dot in those items, and take closure.

CS 412/413 Spring 2007

Goto: Nonterminal Symbols

(same algorithm for transitions on nonterminals)

CS 412/413 Spring 2007

Reduce States

Full LR(0) Machine

Parsing Example: ((a),b)

$derivation$ $((a),b) \Leftarrow$ $((a),b) \Leftarrow$ $((a),b) \Leftarrow$ $((a),b) \Leftarrow$ $((a),b) \Leftarrow$ $((b),b) \leftarrow$	stack 1 13 133 1332 1337 1335 13356 137 135 1358 13582	input ((a),b) (a),b)),b)),b)),b) ,b) ,b) ,b) ,b) ,b)
		b)))
(L) ⇐ (L) ⇐ S	135 1356 14)

action

shift, goto 3 shift, goto 3 shift, goto 2 reduce $S \rightarrow id$ reduce $L \rightarrow S$ shift, goto 6 reduce $S \rightarrow (L)$ reduce $L \rightarrow S$ shift, goto 8 shift, goto 9 reduce $S \rightarrow id$ reduce $L \rightarrow L$, S shift, goto 6 reduce $S \rightarrow (L)$ done

CS 412/413 Spring 2007

Reductions

- On reducing $B \rightarrow \beta$ with stack $\alpha \beta_2$:
 - pop $|\beta|$ states off stack
 - This reveals topmost state Q, which contains an item $[A \rightarrow \beta_1.B\beta_3]$
 - push state Goto(Q,B) onto the stack

LR(0) Parsing Table

LR(0) Summary

 LR(0) parsing recipe: Start with an LR(0) grammar
 Compute LR(0) states and build DFA: Build the LR(0) parsing table from the DFA

LR(0) Limitations

- An LR(0) machine only works if each state with a reduce action has only one possible reduce action and no shift action
- With more complex grammars, construction gives states with shift/reduce or reduce/reduce conflicts
- Need to use look-ahead to choose

A Non-LR(0) Grammar

• Grammar for addition of numbers:

 $S \rightarrow S + E \mid E$ $E \rightarrow num \mid (S)$

- Left-associative is LR(0)
- Right-associative version is not LR(0) $S \rightarrow E + S \mid E$ $E \rightarrow num \mid (S)$

LR(0) Parsing Table

SLR(k)

- Use the LR(0) machine states as rows of table
- Let Q be a state and u be a lookahead string
 - Action(Q,u) = $\underline{shift Goto(Q,b)}$

if Q contains an item of the form $[A \rightarrow \beta_1.b\beta_3]$, with $u \in FIRST_k(b\beta_3 FOLLOW_k(A))$

- Action(Q,u) = \underline{accept}

if Q = { [S' \rightarrow S] } and u= ϵ

- Action(Q,u) = \underline{reduce} i

if Q contains the item $[A \rightarrow \beta.]$, where $A \rightarrow \beta$ is the i<u>th</u> production of G and $u \in FOLLOW_k(A)$

- Action(Q,u) = \underline{error} otherwise

 G is SLR(k) iff the Action function given above is single-valued for all Q and u, i.e, there are no shift-reduce or reduce-reduce conflicts.

CS 412/413 Spring 2007

Next Time

- Learn about other kinds of LR parsing:
 - SLR = improved LR(0)
 - LR(1) = 1 character lookahead
 - LALR(1) = Look-Ahead LR(1)
- Basic ideas are the same as for LR(0)
 - Parser states with LR items
 - DFA with transitions between parser states
 - Parser table with shift/reduce/goto actions