
CS 412/413 Spring 2007 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 9: LR Parsing
February 9, 2007

CS 412/413 Spring 2007 Introduction to Compilers 2

LR(k) Grammars

• LR(k) = Left-to-right scanning, Right-most
derivation, k look-ahead characters

• Main cases: LR(0), LR(1), SLR(k), and LALR(1)

• Parsers for LR(0) Grammars:
– Know whether to shift or reduce without consulting

the lookahead symbol
– Give intuition and techniques relevant for creating

parsers for all grammar classes to be considered

CS 412/413 Spring 2007 Introduction to Compilers 3

Building LR(0) Parsing Tables
• To build the parsing table:

– Define states of the parser

– Build a DFA to describe the transitions between states

– Use the DFA to build the parsing table

CS 412/413 Spring 2007 Introduction to Compilers 4

Viable Prefix
• γ is a viable prefix for G iff there is some

derivation
S ⇒* αAz ⇒ αβz

where γ is a prefix of αβ

• {γ | γ is a viable prefix of G} is a regular
language, i.e., it can be recognized by a DFA
known as the Canonical LR(0) Machine

CS 412/413 Spring 2007 Introduction to Compilers 5

Viable Prefix (Informally)
• γ is a viable prefix for G if it is a prefix of a

sentential form derived from S that does not
extend past the end of the handle of the
sentential form.

α S

handle

β

S ⇒* αAz ⇒ αβz

CS 412/413 Spring 2007 Introduction to Compilers 6

LR(0) Items

• An LR(0) item for G is a triple 〈A, β1, β2〉

such that A→β1β2 is a production of G. The

item 〈A, β1, β2〉 is denoted by [A→β1.β2]

CS 412/413 Spring 2007 Introduction to Compilers 7

Validity of LR(0) Items

• The item [A→β1.β2] is valid for viable prefix αβ1

iff S ⇒* αAz ⇒ αβ1β2z

• Note:

– β1 may be ε

– β2 may be ε

• For any viable prefix α, let V(α) denote the set

of LR(0) items that are valid for α.

CS 412/413 Spring 2007 Introduction to Compilers 8

Sets of Valid Items

• Observations
– There are only finitely many distinct LR(0) items for

a given G.

– Thus, there are only finitely many sets of LR(0) items
for G.

• Sets of valid items for viable prefixes of G will

serve as the states of a DFA, i.e., the canonical

LR(0) machine.

CS 412/413 Spring 2007 Introduction to Compilers 9

Relation ↓

• The relation ↓ on LR(0) items is defined by I ↓ I’ iff ∃ A,

B, β1, β2 , β3 such that

I = [A → β1.Bβ3]

I’ = [B → .β2]

• Lemma. Let I, I’ be as above. If I ∈ V(αβ1) and I ↓ I’, then I’ ∈

V(αβ1).

– I ∈ V(αβ1) implies S ⇒* αAz ⇒ αβ1Bβ3z

– Assuming G has no useless productions, ∃y such that β3 ⇒*y

– Thus, S ⇒* αAz ⇒ αβ1Bβ3z ⇒* αβ1Byz ⇒ αβ1β2yz

– Thus, I’ (i.e., [B → .β2]) ∈ V(αβ1)

CS 412/413 Spring 2007 Introduction to Compilers 10

Relation →x

• For any X ∈ (V ∪Σ), the relation →x is defined by I →x I’

iff ∃ A, β1, β3 such that

I = [A → β1.Xβ3]

I’ = [A → β1X.β3]

• Lemma. Let I, I’ be as above. If I ∈ V(αβ1) then I’ ∈ V(αβ1X).

– I = [A → β1.Xβ3] ∈ V(αβ1) implies

S ⇒* αAz ⇒ αβ1Xβ3z

which by definition means I’ (= [A → β1X.β3]) ∈ V(αβ1X)

CS 412/413 Spring 2007 Introduction to Compilers 11

Technical Details
• Start symbol never appears on RHS

– It is convenient if the start symbol never appears on
the RHS of any production.

– Given G = 〈V,Σ,S,→〉, let S’∉V and

G’ = 〈V,Σ,S’,→ ∪ {S’→S}〉
– Assume that the grammars we work with have the

form of G’.

• If S is a set and R is a relation, then
SR={y| x∈S and 〈x,y〉 ∈ R}

SR is called S mapped by R

CS 412/413 Spring 2007 Introduction to Compilers 12

V(ε), the base case
• Let S’ be the start symbol of G. Then

– V(ε) = { [S’→.S] }↓*

(i.e., the “initial item” of G {[S’→.S]} mapped by the

reflexive transitive closure of the ↓ relation.)

• If Q is a set of items, we call Q↓* the closure(Q).

CS 412/413 Spring 2007 Introduction to Compilers 13

V(αX), the inductive case

• For any α and X, V(αX) = V(α)→x↓*

• For any set Q of items, we call Q→x↓* the X-

successor of Q, or Goto(Q,X).

CS 412/413 Spring 2007 Introduction to Compilers 14

Canonical LR(0) Machine
• States: Sets of valid items

• Transition function: Goto, as defined above.

• Algorithm: To compute all sets of valid items

STATES := V(ε)
while ∃ Q ∈ STATES, X∈(V∪Σ) such that

Goto(Q,X) ∉ STATES
do STATES := STATES ∪ { Goto(Q,X) }

• Clearly, this terminates, as STATES is bounded above by
the Powerset(LR(0) items)

CS 412/413 Spring 2007 Introduction to Compilers 15

LR(0) Grammar

• Nested lists:

S → (L) | id
L → S | L,S

• Sample strings

• (a,b,c)

• ((a,b),(c,d),(e,f))

• (a,(b,c,d),((f,g)))

S

(L)
L , S

L , S

S

d

a
L , S
S c
b

Parse tree for
(a, (b,c), d)

)(S

CS 412/413 Spring 2007 Introduction to Compilers 16

Start State

• Start state
– V(ε) = { [S’→.S] }↓*

= { [S’→.S] [S→.(L)], [S→.id] }

• Closure of a parser state Q:
– Start with Closure(Q) := Q
– Then for each item in Q:

A → α.Bβ
add the items for all the productions B → γ to the
closure of Q:

B → . γ

Grammar
S → (L) | id
L → S | L, S

CS 412/413 Spring 2007 Introduction to Compilers 17

Goto: Terminal Symbols

[S’→.S]
[S→.(L)]
[S→.id]

[S → (.L)]
[L → . S]
[L → .L,S]
[S → .(L)]
[S → .id]

Grammar
S → (L) | id
L → S | L,S

(

[S → id.]
id

In new state, include all items that have appropriate
input symbol just after dot, advance dot in those items,
and take closure.

id (

CS 412/413 Spring 2007 Introduction to Compilers 18

Goto: Nonterminal Symbols

[S’→.S]
[S→.(L)]
[S→.id]

[S → (.L)]
[L → . S]
[L → .L,S]
[S → .(L)]
[S → .id]

(

[S → id.]
id

(same algorithm for transitions on nonterminals)

id (

[S → (L.)]
[L → L.,S]

L

[L → S.]
S

S’

[S’→ S.]

CS 412/413 Spring 2007 Introduction to Compilers 19

Reduce States

[S’→.S]
[S→.(L)]
[S→.id]

[S → (.L)]
[L → . S]
[L → .L,S]
[S → .(L)]
[S → .id]

(

[S → id.]
id

id (

[S → (L.)]
[L → L.,S]

L

[L → S.]
S

S’

[S’→ S.]
states causing

reductions

CS 412/413 Spring 2007 Introduction to Compilers 20

Full LR(0) Machine

[S’ → .S]
[S → .(L)]
[S → .id] [S → (.L)]

[L → .S]
[L → .L,S]
[S → .(L)]
[S → .id]

(

[S → id.]id

(

id

[S → (L.)]
[L → L.,S]

L

[L → S.]

S

[L → L,.S]
[S → .(L)]
[S → . Id]

id [L → L,S.]S

[S → (L).]

)

[S’→ S.]

S

1 2

3

4

5

6
7

8
9

Grammar:
S → (L) | id
L → S | L, S

,

CS 412/413 Spring 2007 Introduction to Compilers 21

Parsing Example: ((a),b)

derivation stack input action
((a),b) ⇐ 1 ((a),b) shift, goto 3
((a),b) ⇐ 13 (a),b) shift, goto 3
((a),b) ⇐ 133 a),b) shift, goto 2
((a),b) ⇐ 1332),b) reduce S→id
((S),b) ⇐ 1337),b) reduce L→S
((L),b) ⇐ 1335),b) shift, goto 6
((L),b) ⇐ 13356 ,b) reduce S→(L)
(S,b) ⇐ 137 ,b) reduce L→S
(L,b) ⇐ 135 ,b) shift, goto 8
(L,b) ⇐ 1358 b) shift, goto 9
(L,b) ⇐ 13582) reduce S→id
(L,S) ⇐ 13589) reduce L→L , S
(L) ⇐ 135) shift, goto 6
(L) ⇐ 1356 reduce S→(L)
S 14 done

Grammar:
S → (L) | id
L → S | L, S

CS 412/413 Spring 2007 Introduction to Compilers 22

Reductions

• On reducing B→β with stack αβ2 :
– pop |β| states off stack
– This reveals topmost state Q, which contains an item

[A → β1.Bβ3]
– push state Goto(Q,B) onto the stack

CS 412/413 Spring 2007 Introduction to Compilers 23

LR(0) Parsing Table
() id , ε S L

1 s3 s2 g4
2 S→id S→id S→id S→id S→id

3 s3 s2 g7 g5
4 accept

5 s6 s8
6 S→(L) S→(L) S→(L) S→(L) S→(L)

7 L→S L→S L→S L→S L→S

8 s3 s2 g9
9 L→L,S L→L,S L→L,S L→L,S L→L,S

CS 412/413 Spring 2007 Introduction to Compilers 24

LR(0) Summary
• LR(0) parsing recipe:

Start with an LR(0) grammar
Compute LR(0) states and build DFA:
Build the LR(0) parsing table from the DFA

CS 412/413 Spring 2007 Introduction to Compilers 25

LR(0) Limitations
• An LR(0) machine only works if each state with

a reduce action has only one possible reduce
action and no shift action

• With more complex grammars, construction
gives states with shift/reduce or reduce/reduce
conflicts

• Need to use look-ahead to choose

[L→ L,S.]
[L → L,S.]
[S → S.,L]

shift /reduce

[L → S,L.]
[L → S.]

reduce / reduceok

CS 412/413 Spring 2007 Introduction to Compilers 26

A Non-LR(0) Grammar

• Grammar for addition of numbers:
S → S + E | E
E → num | (S)

• Left-associative is LR(0)

• Right-associative version is not LR(0)
S → E + S | E
E → num | (S)

CS 412/413 Spring 2007 Introduction to Compilers 27

LR(0) Parsing Table
Grammar
S → E + S | E
E → num | (S)

[S’ → .S]
[S → .E+S]
[S → .E]
[E → .num]
[E → .(S)]

[S → E.+S]
[S → E.]

E

What to do in state 2?

+ ε E
1 2
2 s3/S→E S→E

1

2 [S → E+.S]
[S → .E+S]
[S → .E]
[E → .num]
[E → .(S)]

3

+

CS 412/413 Spring 2007 Introduction to Compilers 28

SLR(k)
• Use the LR(0) machine states as rows of table

• Let Q be a state and u be a lookahead string
– Action(Q,u) = shift Goto(Q,b)

if Q contains an item of the form [A→ β1.bβ3], with u ∈ FIRSTk(bβ3

FOLLOWk(A))

– Action(Q,u) = accept

if Q = { [S’→S] } and u=ε

– Action(Q,u) = reduce i

if Q contains the item [A→ β.], where A→ β is the ith production of
G and u ∈ FOLLOWk(A)

– Action(Q,u) = error otherwise

• G is SLR(k) iff the Action function given above is single-valued for
all Q and u, i.e, there are no shift-reduce or reduce-reduce
conflicts.

CS 412/413 Spring 2007 Introduction to Compilers 29

Next Time

• Learn about other kinds of LR parsing:
– SLR = improved LR(0)
– LR(1) = 1 character lookahead
– LALR(1) = Look-Ahead LR(1)

• Basic ideas are the same as for LR(0)
– Parser states with LR items
– DFA with transitions between parser states
– Parser table with shift/reduce/goto actions

	CS412/CS413
	LR(k) Grammars
	Building LR(0) Parsing Tables
	Viable Prefix
	Viable Prefix (Informally)
	LR(0) Items
	Validity of LR(0) Items
	Sets of Valid Items
	Relation
	Relation x
	Technical Details
	V(), the base case
	V(X), the inductive case
	Canonical LR(0) Machine
	LR(0) Grammar
	Start State
	Goto: Terminal Symbols
	Goto: Nonterminal Symbols
	Reduce States
	Full LR(0) Machine
	Reductions
	LR(0) Parsing Table
	LR(0) Summary
	LR(0) Limitations
	A Non-LR(0) Grammar
	LR(0) Parsing Table
	SLR(k)
	Next Time

