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Outline

• DFA state minimization
• Lexical analyzers
• Automating lexical analysis
• Jlex lexical analyzer generator
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Finite Automata
• Finite automata:

– States, transitions between states
– Initial state, set of final states

• DFA: Deterministic Finite Automaton
– Each transition consumes an input character
– Each transition is uniquely determined by the input character

• NFA: Non-deterministic Finite Automaton
– ε-transitions, which do not consume input characters
– Multiple transitions from the same state on the same input 

character
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From RE to DFA 

• Two steps:
– Convert the regular expression to an NFA
– Convert the resulting NFA to a DFA

• The generated DFAs may have a large number of 
states

• State Minimization is an optimization that converts a 
DFA to another DFA that recognizes the same 
language and has a minimum number of states
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• Example:

– DFA1:

– DFA2:

– Both DFAs accept: b*ab*a

State Minimization
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• Step1. Partition states of original DFA into maximal-
sized groups of “equivalent” states S = {G1, … ,Gn}

• Step 2. Construct the minimized DFA such that there 
is a state for each group Gi
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State Minimization
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DFA Minimization (Equivalence)
• All states in group Gi are equivalent iff for any two 

states p and q in Gi, and for every symbol σ, 
transition(p,σ) and transition(q,σ) are either both 
Error, or are states in the same group Gj (possibly Gi
itself).
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DFA Minimization (Equivalence)
• All states in group Gi are equivalent iff for any two 

states p and q in Gi, and for every symbol σ, 
transition(p,σ) and transition(q,σ) are either both 
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DFA Minimization
• Step1. Partition states of original DFA into maximal-

sized groups of equivalent states
– Step 1a. Discard states not reachable from start state
– Step  1b. Initial partition is S = {Final, Non-final}
– Step 1c.  Repeatedly refine the partition {G1,…,Gn} while 

some group Gi contains states p and q such that for some 
symbol σ, transitions from p and q on σ are to different 
groups
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• Step1. Partition states of original DFA into maximal-
sized groups of “equivalent” states
– Step 1a. Discard states not reachable from start state
– Step  1b. Initial partition is S = {Final, Non-final}
– Step 1c.  Repeatedly refine the partition {G1,…,Gn} while 

some group Gi contains states p and q such that for some 
symbol σ, transitions from p and q on σ are to different 
groups

Introduction to Compilers

DFA Minimization
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Optimized Acceptor

RE ⇒ NFA

NFA ⇒ DFA

DFA
Simulation

Yes, if w ∈ L(R)

No,  if w ∉ L(R)
Input
String

Regular 
Expression R

w

Minimize DFA
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Lexical Analyzers vs Acceptors

• Lexical analyzers use the same mechanism, 
but they:
– Have multiple RE descriptions for multiple tokens
– Output a sequence of matching tokens (or an 

error)
– Always return the longest matching token
– For multiple longest matching tokens, use rule 

priorities
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Lexical Analyzers

RE ⇒ NFA
NFA ⇒ DFA

Minimize DFA

DFA
Simulation

Character
Stream

REs for
Tokens

R1 … Rn

program Token stream
(and errors)
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whitespace

identifier

number

keywords

Handling Multiple REs

ε

ε

ε
ε

NFAs
Minimized DFA

• Construct one NFA for each RE
• Associate the final state of each NFA with the given RE
• Combine NFAs for all REs into one NFA
• Convert NFA to minimized DFA, associating each final DFA state 

with the highest priority RE of the corresponding NFA states
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Scanning Algorithm
• Scan input and simulate DFA until no further 

transition is possible keeping track of most recently 
visited final state F

• Roll input back to position at the time F was entered
• Emit token associated with F
• For each successive token, scan remaining input and 

simulate DFA from the start state, i.e., scanner is 
“stateless” (NB. this is to be changed below.)
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Example of Roll Back
Consider three REs: {aa  ba  aabb] and  input: aaba

• Reach state 3 with no transition on next character a
• Roll input back to position on entering state 2 (i.e., 

having read aa)
• Emit token for aa
• On next call to scanner, start in state 0 again with 

input ba
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Automating Lexical Analysis

• All of the lexical analysis process can be 
automated
– RE → NFA → DFA → Minimized DFA
– Minimized DFA → Lexical Analyzer

(DFA Simulation Program)

• We only need to specify:
– Regular expressions for the tokens
– Rule priorities for multiple longest match cases
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Lexical Analyzer Generators

Jlex 
Compiler

Character
Stream

REs for
Tokens

Token stream
(and errors)
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Jlex Specification File
• Jlex = Lexical analyzer generator 

– written in Java
– generates a Java lexical analyzer

• Has three parts:
– Preamble, which contains package/import declarations
– Definitions, which contains regular expression abbreviations 
– Regular expressions and actions, which contains:

• the list of regular expressions for all the tokens 
• Corresponding actions for each token (Java code to be 

executed when the token is recognized)
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Example Specification File
Package Parse;
Import Error.LexicalError;
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new 

Token(INT, Integer.valueOf(yytext()); }
“if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }
{identifier} { return new Token(ID, yytext()); }
. { ErrorMsg.error(“illegal character”); }
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Start States
• Mechanism that specifies state in which to 

start the execution of the DFA
• Declare states in the second section

– %state STATE

• Use states as prefixes of regular expressions 
in the third section:
– <STATE> regex  {action}

• Set current state in the actions
– yybegin(STATE)

• There is a pre-defined initial state: YYINITIAL
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Example

STRINGINITIAL .

”

”

if

%%
%state STRING
%%
<YYINITIAL> “if” { return new Token(IF, null); }
<YYINITIAL> “\”” { yybegin(STRING); … }
<STRING> “\”” { yybegin(YYINITIAL); … }
<STRING> . { … }
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Start States and REs
• The use of start states allows the lexer to 

recognize more than regular expressions (or 
DFAs)
– Reason: the lexer can jump across different states 

in the semantic actions using yybegin(STATE)

• Example: nested comments
– Increment a global variable on open parentheses 

and decrement it on close parentheses
– When the variable gets to zero, jump to YYINITIAL

– The global variable essentially models an infinite 
number of states!
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Conclusion
• Regular expressions: concise way of 

specifying tokens
• Can convert RE to NFA, then to DFA, then to 

minimized DFA
• Use the minimized DFA to recognize tokens in 

the input stream
• Automate the process using lexical analyzer 

generators
– Write regular expression descriptions of tokens
– Automatically get a lexical analyzer program which 

identifies tokens from an input stream of 
characters
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