
CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 4: Lexical Analyzers
28 Jan 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Outline

• DFA state minimization
• Lexical analyzers
• Automating lexical analysis
• Jlex lexical analyzer generator

CS 412/413 Spring 2008 Introduction to Compilers 3

Finite Automata
• Finite automata:

– States, transitions between states
– Initial state, set of final states

• DFA: Deterministic Finite Automaton
– Each transition consumes an input character
– Each transition is uniquely determined by the input character

• NFA: Non-deterministic Finite Automaton
– ε-transitions, which do not consume input characters
– Multiple transitions from the same state on the same input

character

CS 412/413 Spring 2008 Introduction to Compilers 4

From RE to DFA

• Two steps:
– Convert the regular expression to an NFA
– Convert the resulting NFA to a DFA

• The generated DFAs may have a large number of
states

• State Minimization is an optimization that converts a
DFA to another DFA that recognizes the same
language and has a minimum number of states

CS 412/413 Spring 2008 Introduction to Compilers 5

• Example:

– DFA1:

– DFA2:

– Both DFAs accept: b*ab*a

State Minimization

0

1

2

a

4a b 3
a

b

b

b

a

0 1 2
a a

b b

• Step1. Partition states of original DFA into maximal-
sized groups of “equivalent” states S = {G1, … ,Gn}

• Step 2. Construct the minimized DFA such that there
is a state for each group Gi

CS 412/413 Spring 2008 Introduction to Compilers 6

State Minimization

0

1

2

a

4a b 3
a

b

b

b

a

a a

b b

CS 412/413 Spring 2008 Introduction to Compilers 7

DFA Minimization (Equivalence)
• All states in group Gi are equivalent iff for any two

states p and q in Gi, and for every symbol σ,
transition(p,σ) and transition(q,σ) are either both
Error, or are states in the same group Gj (possibly Gi
itself).

p

q

Gi

GkGj

a

(or Error)

r
b

a

b

a

b

c

c

c

CS 412/413 Spring 2008 Introduction to Compilers 8

DFA Minimization (Equivalence)
• All states in group Gi are equivalent iff for any two

states p and q in Gi, and for every symbol σ,
transition(p,σ) and transition(q,σ) are either both
Error, or are states in the same group Gj (possibly Gi
itself).

Gi

GkGj (or Error)a b

c

CS 412/413 Spring 2008 Introduction to Compilers 9

DFA Minimization
• Step1. Partition states of original DFA into maximal-

sized groups of equivalent states
– Step 1a. Discard states not reachable from start state
– Step 1b. Initial partition is S = {Final, Non-final}
– Step 1c. Repeatedly refine the partition {G1,…,Gn} while

some group Gi contains states p and q such that for some
symbol σ, transitions from p and q on σ are to different
groups

p

q

Gi GkGj

a

a

(or Error)

j ≠ k

• Step1. Partition states of original DFA into maximal-
sized groups of “equivalent” states
– Step 1a. Discard states not reachable from start state
– Step 1b. Initial partition is S = {Final, Non-final}
– Step 1c. Repeatedly refine the partition {G1,…,Gn} while

some group Gi contains states p and q such that for some
symbol σ, transitions from p and q on σ are to different
groups

Introduction to Compilers

DFA Minimization

CS 412/413 Spring 2008 10

GkGj

a

a

p

q

Gi

Gi’

(or Error)

j ≠ k

CS 412/413 Spring 2008 Introduction to Compilers 11

Optimized Acceptor

RE ⇒ NFA

NFA ⇒ DFA

DFA
Simulation

Yes, if w ∈ L(R)

No, if w ∉ L(R)
Input
String

Regular
Expression R

w

Minimize DFA

CS 412/413 Spring 2008 Introduction to Compilers 12

Lexical Analyzers vs Acceptors

• Lexical analyzers use the same mechanism,
but they:
– Have multiple RE descriptions for multiple tokens
– Output a sequence of matching tokens (or an

error)
– Always return the longest matching token
– For multiple longest matching tokens, use rule

priorities

CS 412/413 Spring 2008 Introduction to Compilers 13

Lexical Analyzers

RE ⇒ NFA
NFA ⇒ DFA

Minimize DFA

DFA
Simulation

Character
Stream

REs for
Tokens

R1 … Rn

program Token stream
(and errors)

CS 412/413 Spring 2008 Introduction to Compilers 14

whitespace

identifier

number

keywords

Handling Multiple REs

ε

ε

ε
ε

NFAs
Minimized DFA

• Construct one NFA for each RE
• Associate the final state of each NFA with the given RE
• Combine NFAs for all REs into one NFA
• Convert NFA to minimized DFA, associating each final DFA state

with the highest priority RE of the corresponding NFA states

CS 412/413 Spring 2008 Introduction to Compilers 15

Scanning Algorithm
• Scan input and simulate DFA until no further

transition is possible keeping track of most recently
visited final state F

• Roll input back to position at the time F was entered
• Emit token associated with F
• For each successive token, scan remaining input and

simulate DFA from the start state, i.e., scanner is
“stateless” (NB. this is to be changed below.)

CS 412/413 Spring 2008 Introduction to Compilers 16

Example of Roll Back
Consider three REs: {aa ba aabb] and input: aaba

• Reach state 3 with no transition on next character a
• Roll input back to position on entering state 2 (i.e.,

having read aa)
• Emit token for aa
• On next call to scanner, start in state 0 again with

input ba

0 1 4
a a

3
b b

65
ab

2

CS 412/413 Spring 2008 Introduction to Compilers 17

Automating Lexical Analysis

• All of the lexical analysis process can be
automated
– RE → NFA → DFA → Minimized DFA
– Minimized DFA → Lexical Analyzer

(DFA Simulation Program)

• We only need to specify:
– Regular expressions for the tokens
– Rule priorities for multiple longest match cases

CS 412/413 Spring 2008 Introduction to Compilers 18

Lexical Analyzer Generators

Jlex
Compiler

Character
Stream

REs for
Tokens

Token stream
(and errors)

lex.l

lex.java

lex.class

javac
Compiler

program

CS 412/413 Spring 2008 Introduction to Compilers 19

Jlex Specification File
• Jlex = Lexical analyzer generator

– written in Java
– generates a Java lexical analyzer

• Has three parts:
– Preamble, which contains package/import declarations
– Definitions, which contains regular expression abbreviations
– Regular expressions and actions, which contains:

• the list of regular expressions for all the tokens
• Corresponding actions for each token (Java code to be

executed when the token is recognized)

CS 412/413 Spring 2008 Introduction to Compilers 20

Example Specification File
Package Parse;
Import Error.LexicalError;
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new

Token(INT, Integer.valueOf(yytext()); }
“if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }
{identifier} { return new Token(ID, yytext()); }
. { ErrorMsg.error(“illegal character”); }

CS 412/413 Spring 2008 Introduction to Compilers 21

Start States
• Mechanism that specifies state in which to

start the execution of the DFA
• Declare states in the second section

– %state STATE

• Use states as prefixes of regular expressions
in the third section:
– <STATE> regex {action}

• Set current state in the actions
– yybegin(STATE)

• There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2008 Introduction to Compilers 22

Example

STRINGINITIAL .

”

”

if

%%
%state STRING
%%
<YYINITIAL> “if” { return new Token(IF, null); }
<YYINITIAL> “\”” { yybegin(STRING); … }
<STRING> “\”” { yybegin(YYINITIAL); … }
<STRING> . { … }

CS 412/413 Spring 2008 Introduction to Compilers 23

Start States and REs
• The use of start states allows the lexer to

recognize more than regular expressions (or
DFAs)
– Reason: the lexer can jump across different states

in the semantic actions using yybegin(STATE)

• Example: nested comments
– Increment a global variable on open parentheses

and decrement it on close parentheses
– When the variable gets to zero, jump to YYINITIAL

– The global variable essentially models an infinite
number of states!

CS 412/413 Spring 2008 Introduction to Compilers 24

Conclusion
• Regular expressions: concise way of

specifying tokens
• Can convert RE to NFA, then to DFA, then to

minimized DFA
• Use the minimized DFA to recognize tokens in

the input stream
• Automate the process using lexical analyzer

generators
– Write regular expression descriptions of tokens
– Automatically get a lexical analyzer program which

identifies tokens from an input stream of
characters

	CS412/413
	Outline
	Finite Automata
	From RE to DFA
	State Minimization
	State Minimization
	DFA Minimization (Equivalence)
	DFA Minimization (Equivalence)
	DFA Minimization
	DFA Minimization
	Optimized Acceptor
	Lexical Analyzers vs Acceptors
	Lexical Analyzers
	Handling Multiple REs
	Scanning Algorithm
	Example of Roll Back
	Automating Lexical Analysis
	Lexical Analyzer Generators
	Jlex Specification File
	Example Specification File
	Start States
	Example
	Start States and REs
	Conclusion

