CS412/413

Introduction to Compilers Tim Teitelbaum

Lecture 3: Finite Automata 25 Jan 08

Outline

- RE review
- Construction of lexing automaton
 - DFAs, NFAs
 - DFA simulation
 - $-RE \Rightarrow NFA$ conversion
 - $-NFA \Rightarrow DFA$ conversion
 - (to be continued for set of prioritized REs)

Concepts

- Tokens: values representing lexical units of a program
 - May represent single character strings ("if", "+")
 - May represent set of strings (identifier, number)
- Regular expressions (RE): concise descriptions of tokens
 - Each regular expression R describes language L(R), a set of strings corresponding to a given class of tokens

Regular Expressions

- If R and S are regular expressions, so are:
 - a for any character a
 - ε empty string
 - Ø the empty set
 - R|S (alternation: "R or S")
 - RS (concatenation: "R followed by S")
 - R* (Kleene closure: "zero or more R's")

Regular Expression Extensions

• If R is a regular expressions, so are:

R?	$= \epsilon \mid R$ (zero or one R)

- = RR* (one or more R's)
- (R) = R (no effect: grouping)
 - = a|b|c (any of the listed)
 - = a|b|...| e (character ranges)
 - = c|d|...

(anything but the listed chars) named abbreviation

name = R

R+

[abc]

[a-e]

[^ab]

Automatic Lexer Generators

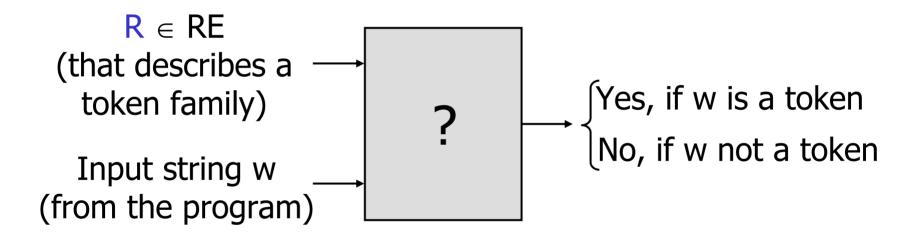
- Input: token spec
 - list of regular expressions in priority order
 - associated action for each RE (generates appropriate kind of token, other bookkeeping)
- Output: lexer program
 - program that reads an input stream and breaks it up into tokens according to the REs (or reports lexical error -- "Unexpected character")

Example: JLex

```
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = \{letter\}(\{letter\}|[0-9_])*
%%
{whitespace} {/* discard */}
{digits}
       { return new Token(INT, Integer.parseInt(yytext()); }
"if"
              { return new Token(IF, yytext()); }
"while"
              { return new Token(WHILE, yytext()); }
. . .
{identifier} { return new Token(ID, yytext()); }
```

How To Use Regular Expressions

• Given $R \in RE$ and input string w, need a mechanism to determine if $w \in L(R)$

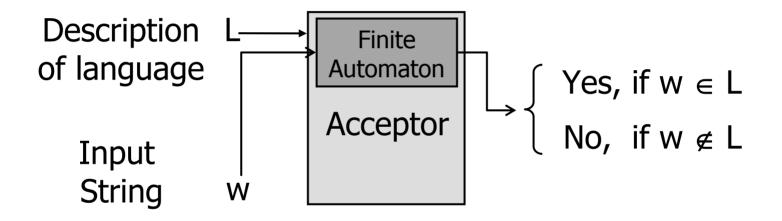


• Such a mechanism is called an acceptor

CS 412/413 Spring 2008

Acceptors

 Acceptor determines if an input string belongs to a language L



• Finite Automata are acceptors for languages described by regular expressions

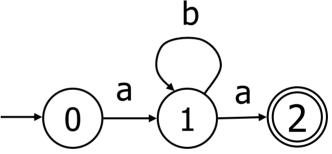
Finite Automata

- Informally, finite automaton consist of:
 - A finite set of states
 - Transitions between states
 - An initial state (start state)
 - A set of final states (accepting states)
- Two kinds of finite automata:
 - Deterministic finite automata (DFA): the transition from each state is uniquely determined by the current input character
 - Non-deterministic finite automata (NFA): there may be multiple possible choices, and some "spontaneous" transitions without input

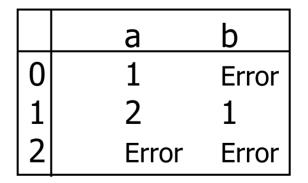
CS 412/413 Spring 2008

DFA Example

 Finite automaton that accepts the strings in the language denoted by regular expression ab*a



– A transition table



CS 412/413 Spring 2008

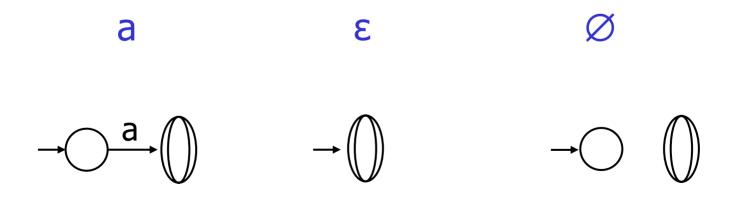
Simulating the DFA

• Determine if the DFA accepts an input string

```
trans_table[NSTATES][NCHARS]
accept_states[NSTATES]
                                                                 b
state = INITIĂI
                                                          a
                                                                       a
while (state != Error) {
    c = input.read();
    if (c == EOF) break;
    state = trans_table[state][c];
return (state!=Error) && accept_states[state];
```

$RE \Rightarrow$ Finite automaton?

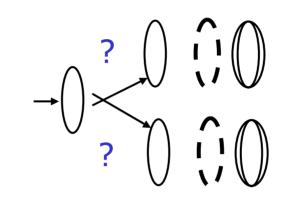
- Can we build a finite automaton for every regular expression?
- Strategy: build the finite automaton inductively, based on the definition of regular expressions



CS 412/413 Spring 2008

$RE \Rightarrow$ Finite automaton?

• Alternation R|S



R automaton

S automaton

• Concatenation: RS

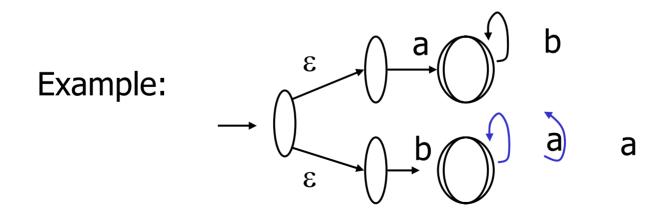
$$\rightarrow \left(\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

R automaton S automaton

CS 412/413 Spring 2008

NFA Definition

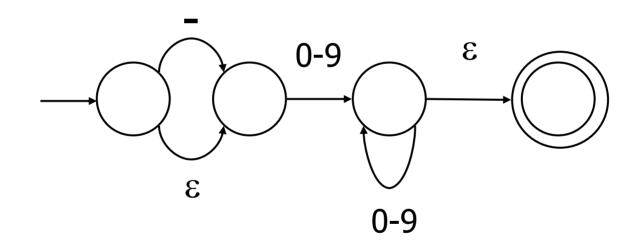
- A non-deterministic finite automaton (NFA) is an automaton where:
 - There may be ϵ -transitions (transitions that do not consume input characters)
 - There may be multiple transitions from the same state on the same input character



CS 412/413 Spring 2008

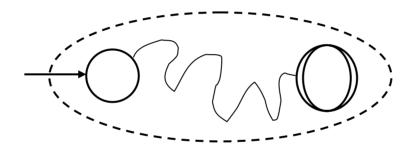
$RE \Rightarrow NFA$ intuition

-?[0-9]+



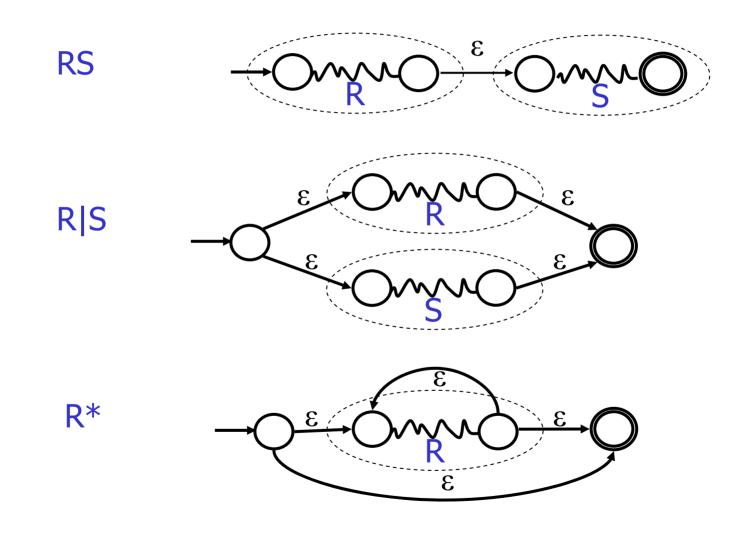
NFA construction (Thompson)

- NFA only needs one stop state (why?)
- Canonical NFA form:



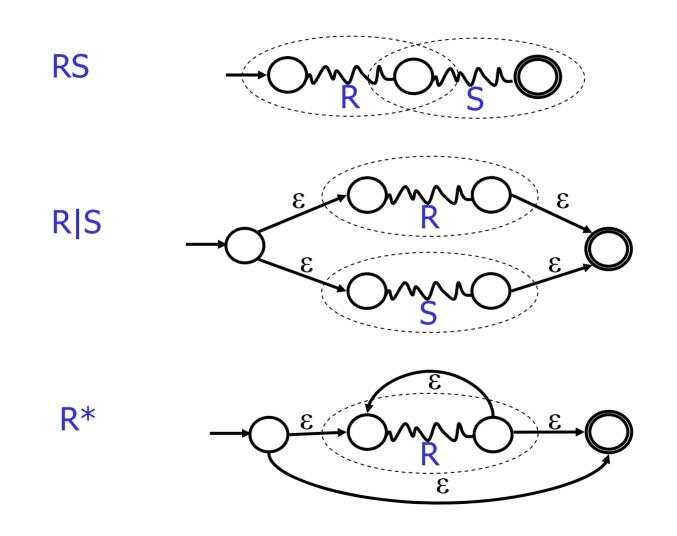
• Use this canonical form to inductively construct NFAs for regular expressions

Inductive NFA Construction



CS 412/413 Spring 2008

Inductive NFA Construction



CS 412/413 Spring 2008

DFA vs NFA

- DFA: action of automaton on each input symbol is fully determined
 - obvious table-driven implementation
- NFA:
 - automaton may have choice on each step
 - automaton accepts a string if there is any way to make choices to arrive at accepting state / every path from start state to an accept state is a string accepted by automaton
 - not obvious how to implement!

CS 412/413 Spring 2008

Simulating an NFA

• Problem: how to execute NFA?

"strings accepted are those for which there is some corresponding path from start state to an accept state"

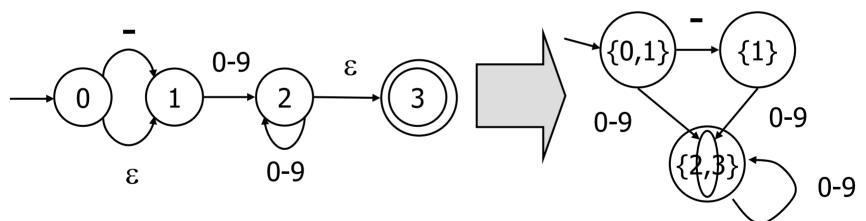
- Solution: search all paths in graph consistent with the string in parallel
 - Keep track of the subset of NFA states that search could be in after seeing string prefix
 - "Multiple fingers" pointing to graph

Example

- Input string: -23
- NFA states: $\{0,1\}$ $\{1\}$ $\{2,3\}$ $\{3,3\}$ $\{2,3\}$ $\{3,3\}$ $\{3,3\}$

NFA \rightarrow DFA conversion

- Can convert NFA directly to DFA by same approach
- Create one DFA state for each distinct subset of NFA states that could arise
- States: {0,1}, {1}, {2, 3}



• Called the "subset construction"

Algorithm

For a set S of states in the NFA, compute
 ε-closure(S) = set of states reachable from states in S
 by one or more ε-transitions

```
\begin{array}{ll} \mathsf{T}=\mathsf{S}\\ \mathsf{Repeat} \ \ \mathsf{T}=\mathsf{T} \ \mathsf{U} \ \{\mathsf{s}' \mid \mathsf{s} \in \mathsf{T}, \ (\mathsf{s},\mathsf{s}') \ \mathsf{is} \ \mathsf{\epsilon}\text{-transition} \}\\ \mathsf{Until} \ \ \ \mathsf{T} \ \mathsf{remains} \ \mathsf{unchanged}\\ \mathsf{\epsilon}\text{-closure}(\mathsf{S})=\mathsf{T} \end{array}
```

 For a set S of ε-closed states in the NFA, compute DFAedge(S,c) = the set of states reachable from states in S by transitions on symbol c and ε-transitions

DFAedge(S,c) = ϵ -closure({ s' | s \in S, (s,s') is c-transition})

Algorithm

```
DFA-initial-state = \epsilon-closure(NFA-initial-state)

Worklist = { DFA-initial-state }

While (Worklist not empty )

Pick state S from Worklist

For each character c

S' = DFAedge(S,c)

if (S' not in DFA states)

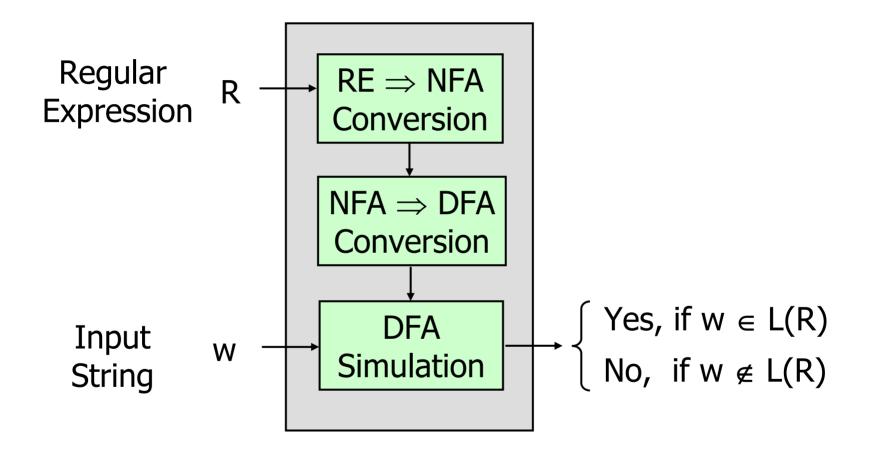
Add S' to DFA states and worklist

Add an edge (S, S') labeled c in DFA
```

For each DFA-state S If S contains an NFA-final state Mark S as DFA-final-state

CS 412/413 Spring 2008

Putting the Pieces Together



See Also (on web)

Regular Expression Matching Can Be Simple And Fast (but is slow in Java, Perl, PHP, Python, Ruby, ...), Russ Cox, January 2007