
CS412/413

Introduction to Compilers
Tim Teitelbaum

Lecture 2: Lexical Analysis
23 Jan 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Outline

• Review compiler structure

• What is lexical analysis?
• Writing a lexer
• Specifying tokens: regular expressions

CS 412/413 Spring 2008 Introduction to Compilers 3

Simplified Compiler Structure

cmp $0, ecx
cmovz edx, ecx

Source code

Understand
source code

Generate
assembly code

Assembly code

if (b == 0) a = b;

Optimize

Intermediate
code

Intermediate
code

CS 412/413 Spring 2008 Introduction to Compilers 4

Simplified Front End Structure
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis

if (b == 0) a = b; Errors
(incorrect
program)

Correct program
(AST representation)

CS 412/413 Spring 2008 Introduction to Compilers 5

More Precise Front End Structure
Source code
(character stream)

Lexical Analysis
Syntax Analysis

Semantic Analysis

if (b == 0) a = b;

Correct program
(AST representation)

Intermediate Code
Generation

Intermediate code

Errors
(incorrect
program)

CS 412/413 Spring 2008 Introduction to Compilers 6

How It Works

Source code
(character stream)

Lexical Analysis

Syntax Analysis
(Parsing)

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0
=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean
Decorated

AST

int

CS 412/413 Spring 2008 Introduction to Compilers 7

How It Works, cont.

Intermediate Code
Generation

Optimizations

if

==

int b int 0

=

int a
lvalue

int b

boolean int

t = (b ==0)
jump t, L
a = b
label L

t = (b ==0)
jump t, L
a = 0
label L

Intermediate
code

Intermediate
code

Decorated
AST

cmp $0,ecx
cmovz $0,[ebp+8]

Assembly
code

Machine Optimizations
and Code Generation

CS 412/413 Spring 2008 Introduction to Compilers 8

First Step: Lexical Analysis

Source code
(character stream)

Lexical Analysis

Token
stream

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

Syntax Analysis

CS 412/413 Spring 2008 Introduction to Compilers 9

Tokens

• Identifiers: x y11 elsen _i00
• Keywords: if else while break
• Constants:

– Integer: 2 1000 -500 5L 0x777
– Floating-point: 2.0 0.00020 .02 1. 1e5 0.e-10
– String: ”x” ”He said, \”Are you?\”\n”
– Character: ’c’ ’\000’

• Symbols: + * { } ++ < << [] >=

• Whitespace (typically recognized and discarded):
– Comment: /** don’t change this **/
– Space: <space>
– Format characters: <newline> <return>

CS 412/413 Spring 2008 Introduction to Compilers 10

Ad-hoc Lexer
• Hand-write code to generate tokens
• How to read identifier tokens?

Token readIdentifier() {
String id = “”;
while (true) {

char c = input.read();
if (!identifierChar(c))

return new Token(ID, id, lineNumber);
id = id + String(c);

}
}

• Problems
– How to start?
– What to do with following character?
– How to avoid quadratic complexity of repeated concatenation?
– How to recognize keywords?

CS 412/413 Spring 2008 Introduction to Compilers 11

• Scan text one character at a time
• Use look-ahead character (next) to determine

what kind of token to read and when the
current token ends
char next;
…
while (identifierChar(next)) {

id = id + String(next);
next = input.read ();

}

Look-ahead Character

e l s e n

next
(lookahead)

CS 412/413 Spring 2008 Introduction to Compilers 12

Ad-hoc Lexer: Top-level Loop

class Lexer {
InputStream s;
char next;
Lexer(InputStream _s) { s = _s; next = s.read(); }
Token nextToken() {

if (identifierFirstChar(next))
return readIdentifier();

if (numericFirstChar(next))
return readNumber();

if (next == ‘\”’) return readStringConst();
…

}
}

CS 412/413 Spring 2008 Introduction to Compilers 13

Problems

• Might not know what kind of token we
are going to read from seeing first
character
– if token begins with “i’’ is it an identifier?
– if token begins with “2” is it an integer

constant?
– interleaved tokenizer code hard to write

correctly, harder to maintain
– in general, unbounded lookahead may be

needed

CS 412/413 Spring 2008 Introduction to Compilers 14

Issues
• How to describe tokens unambiguously

2.e0 20.e-01 2.0000
“” “x” “\\” “\”\’”

• How to break up text into tokens
if (x == 0) a = x<<1;
if (x == 0) a = x<1;

• How to tokenize efficiently
– tokens may have similar prefixes
– want to look at each character ~1 time

CS 412/413 Spring 2008 Introduction to Compilers 15

Principled Approach

• Need a principled approach
– lexer generator that generates efficient

tokenizer automatically (e.g., lex, flex, JLex)
– a.k.a. scanner generator

• Approach
– Describe programming language’s tokens

with a set of regular expressions
– Generate scanning automaton from that set

of regular expressions

CS 412/413 Spring 2008 Introduction to Compilers 16

Language Theory Review
• Let Σ be a finite set

– Σ called an alphabet
– a ∈ Σ called a symbol

• Σ* is the set of all finite strings
consisting of symbols from Σ

• A subset L ⊆ Σ* is called a language
• If L1 and L2 are languages, then L1 L2 is

the concatenation of L1 and L2, i.e., the
set of all pair-wise concatenations of
strings from L1 and L2, respectively

CS 412/413 Spring 2008 Introduction to Compilers 17

Language Theory Review, ctd.
• Let L ⊆ Σ* be a language
• Then

– L0 = {}
– Ln+1 = L Ln for all n ≥ 0

• Examples
– if L = {a, b} then

• L1 = L = {a, b}
• L2 = {aa, ab, ba, bb}
• L3 = {aaa, aab, aba, aba, baa, bab, bba, bbb}
• …

CS 412/413 Spring 2008 Introduction to Compilers 18

Syntax of Regular Expressions
• Set of regular expressions (RE) over

alphabet Σ is defined inductively by
– Let a ∈ Σ and R, S ∈ RE. Then:

• a ∈ RE
• ε ∈ RE
• ∅ ∈ RE
• R|S ∈ RE
• RS ∈ RE
• R* ∈ RE

• In concrete syntactic form, precedence
rules, parentheses, and abbreviations

CS 412/413 Spring 2008 Introduction to Compilers 19

Semantics of Regular Expressions
• Regular expression T ∈ RE denotes the

language L(R) ⊆ Σ* given according to the
inductive structure of T:
– L(a) ={a} the string “a”
– L(ε) = {“”} the empty string
– L(∅) = {} the empty set
– L(R|S) = L(R) ∪ L(S) alternation
– L(RS) = L(R) L(S) concatenation
– L(R*) = {“”} ∪ L(R) ∪ L(R2) ∪ L(R3) ∪ L(R4) ∪ …

Kleene closure

CS 412/413 Spring 2008 Introduction to Compilers 20

Simple Examples
• L(R) = the “language” defined by R

– L(abc) = { abc }
– L(hello|goodbye) = {hello, goodbye}
– L(1(0|1)*) = all non-zero binary numerals

beginning with 1

CS 412/413 Spring 2008 Introduction to Compilers 21

Convienent RE Shorthand
R+ one or more strings from L(R): R(R*)
R? optional R: (R|ε)
[abce] one of the listed characters: (a|b|c|e)
[a-z] one character from this range:

(a|b|c|d|e|…|y|z)
[^ab] anything but one of the listed chars
[^a-z] one character not from this range
”abc” the string “abc”
\(the character ’(’
. . .
id=R named non-recursive regular expressions

CS 412/413 Spring 2008 Introduction to Compilers 22

More Examples
Regular Expression R Strings in L(R)

digit = [0-9] “0” “1” “2” “3” …
posint = digit+ “8” “412” …
int = -? posint “-42” “1024” …
real = int ((. posint)?) “-1.56” “12” “1.0”

= (-|ε)([0-9]+)((. [0-9]+)|ε)
[a-zA-Z_][a-zA-Z0-9_]* C identifiers
else the keyword “else”

CS 412/413 Spring 2008 Introduction to Compilers 23

How To Break Up Text

elsen = 0;

• REs alone not enough: need rule(s) for
disambiguation

• Most languages: longest matching token wins
• Ties in length resolved by prioritizing tokens
• Lexer definition = RE’s + priorities + longest-

matching-token rule + token representation

else n =

elsen =

0

0

1

2

CS 412/413 Spring 2008 Introduction to Compilers 24

Historical Anomalies
• PL/I

– Keywords not reserved
• IF IF THEN THEN ELSE ELSE;

• FORTRAN
– Whitespace stripped out prior to scanning

• DO 123 I = 1
• DO 123 I = 1 , 2

• By and large, modern language design
intentionally makes scanning easier

CS 412/413 Spring 2008 Introduction to Compilers 25

Summary
• Lexical analyzer converts a text stream to

tokens
• Ad-hoc lexers hard to get right, maintain
• For most languages, legal tokens are

conveniently and precisely defined using
regular expressions

• Lexer generators generate lexer automaton
automatically from token RE’s, prioritization

• Next lecture: how lexer generators work

CS 412/413 Spring 2008 Introduction to Compilers 26

Reading
• IC Language spec
• JLEX manual
• CVS manual
• Links on course web home page

Groups
• If you haven’t got a full group lined up,

hang around and talk to prospective
group members today

	CS412/413
	Outline
	Simplified Compiler Structure
	Simplified Front End Structure
	More Precise Front End Structure
	How It Works
	How It Works, cont.
	First Step: Lexical Analysis
	Tokens
	Ad-hoc Lexer
	Look-ahead Character
	Ad-hoc Lexer: Top-level Loop
	Problems
	Issues
	Principled Approach
	Language Theory Review
	Language Theory Review, ctd.
	Syntax of Regular Expressions
	Semantics of Regular Expressions
	Simple Examples
	Convienent RE Shorthand
	More Examples
	How To Break Up Text
	Historical Anomalies
	Summary
	Reading

