
CS412/413

Introduction to
Compilers and Translators

Lecture 1: Overview
21 Jan 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Outline

• Course Organization
– General course information
– Homework & project information

• Introduction to Compilers
– What are they?
– Why do we need them?
– What is their general structure?

CS 412/413 Spring 2008 Introduction to Compilers 3

General Information

When
Where

MWF 10:10 - 11:00AM

Phillips 213

Instructor
Teaching Assistant

Tim Teitelbaum
TBD

Course staff email cs412-l@cs.cornell.edu

Web page courses.cs.cornell.edu/cs412

Newsgroup cornell.class.412

CS 412/413 Spring 2008 Introduction to Compilers 4

Important

• CS 413 is required!
• Large implementation project
• Substantial amount of theory

CS 412/413 Spring 2008 Introduction to Compilers 5

Textbooks
• Optional texts

– Compilers -- Principles, Techniques and Tools
(Dragon Book), by Aho, Sethi and Ullman (1986)

– Modern Compiler Implementation in Java, by
Andrew Appel (2002)

– Engineering a Compiler, by Linda Torczon and
Keith Cooper (2003)

• They will be on reserve in Engineering Library

CS 412/413 Spring 2008 Introduction to Compilers 6

Work Distribution

• Theory:
– Homeworks = 20%

• 4 homeworks: 5% each
– Exams = 35%

• 2 prelims: 17% and 18%; no final exam

• Practice:
– Programming Assignments = 45%

• 6 assignments: 5/9/9/9/9
• Project demo

CS 412/413 Spring 2008 Introduction to Compilers 7

Homeworks

• 4 homework assignments
– Three assignments in first half of course
– One homework in second half

• Not done in groups
– do your own work

CS 412/413 Spring 2008 Introduction to Compilers 8

Project
• Implementation:

– Designed language = a subset of Java
– Generated code = assembly x86
– Implementation language = Java

• 5 programming assignments

• Groups of 3-4 students
– Usually same grade for all
– Group information due Friday
– We will respect consistent preferences

CS 412/413 Spring 2008 Introduction to Compilers 9

Assignments
• Due at beginning of class

– Homeworks: paper turn in (at beginning of class)
– Project files: electronic turn in (day before class)
– Assignments managed with Course Management

System (CMS)

• Late homework, programming assignments
increasingly penalized
– Penalty linearly increasing : 10% per day
– 1 day: 10%, 2 days: 20%, 3 days: 30%, etc.

CS 412/413 Spring 2008 Introduction to Compilers 10

Why Take This Course?

• CS412/413 is an elective course

• Reason #1: understand compilers/languages
– Understand code structure
– Understand language semantics
– Understand relation between source code

and generated machine code
– Become a better programmer

CS 412/413 Spring 2008 Introduction to Compilers 11

Why Take This Course? (ctd.)
• Reason #2: nice balance of theory and practice:

– Theory:
• Lots of mathematical models: regular expressions,

automata, grammars, graphs, lattices
• Lots of algorithms that use these models

– Practice:
• Apply theoretical notions to build a real compiler
• Better understand why “theory and practice are the

same in theory, but different in practice”

CS 412/413 Spring 2008 Introduction to Compilers 12

Why Take This Course? (ctd.)
• Reason #3: Programming experience

– Write a large program that manipulates
complex data structures

– Learn how to be a better programmer in
groups

– Learn more about Java and Intel x86
architecture and assembly language

CS 412/413 Spring 2008 Introduction to Compilers 13

Why Take This Course? (ctd.)
• Reason #4: Technical background for

emerging field of software assurance
– Software assurance will be major priority of

coming decade
– Bug-finding and security-violation finding tools

build on compiler techniques

CS 412/413 Spring 2008 Introduction to Compilers 14

What Are Compilers?
• Compilers translate information from one

representation to another.
• Most commonly, the information is a program
• Typically

– “Compilers” translate from high-level source code
to low-level code (e.g., object code)

– “Translators” transform representations at the
same level of abstraction

CS 412/413 Spring 2008 Introduction to Compilers 15

Examples
• Typical compilers: gcc, javac
• Non-typical compilers:

– latex (document compiler) :
• Transforms a LaTeX document into DVI printing commands
• Input information: document (not program)

– C-to-Hardware compiler:
• Generates hardware circuits for C programs
• Output is lower-level than typical compilers

• Translators:
– f2c : Fortran-to-C translator (both high-level)
– latex2html : LaTeX-to-HTML (both documents)
– dvi2ps: DVI-to-PostScript (both low-level)

CS 412/413 Spring 2008 Introduction to Compilers 16

In This Class
• We will study typical compilation: from

programs written in high-level languages to
low-level object code and machine code

• Most of the principles and techniques in this
course apply to non-typical compilers and
translators

CS 412/413 Spring 2008 Introduction to Compilers 17

Why Do We Need Compilers?
• It is difficult to write, debug, maintain, and understand

programs written in assembly language

• Tremendous increase in productivity when first compilers
appeared (about 55 years ago)

• There are still few cases when it is better to manually
write assembly code
– E.g., to access low-level resources of the machine (device drivers)
– These code fragments are very small; the compiler handles the

rest of the code in the application

CS 412/413 Spring 2008 Introduction to Compilers 18

Overall Compiler Structure

High-level source code

Compiler

Low-level machine code

CS 412/413 Spring 2008 Introduction to Compilers 19

Source Code

• Optimized for human readability
– Matches human notions of grammar
– Uses named constructs such as variables and

procedures

int expr(int n)
{

int d;
d = 4 * n * n * (n + 1) * (n + 1);
return d;

}

CS 412/413 Spring 2008 Introduction to Compilers 20

Assembly and Machine Code

• Optimized for hardware
– Consists of machine instructions; uses

registers and unnamed memory locations
– Much harder to understand by humans

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

CS 412/413 Spring 2008 Introduction to Compilers 21

Translation Efficiency
• Goal: generate machine code that describes the

same computation as the source code

• Is there a unique translation?

• Is there an algorithm for an “ideal translation”?
(ideal = either fastest or smallest generated code)

• Compiler optimizations = find better translations!

CS 412/413 Spring 2008 Introduction to Compilers 22

Optimized Code
s4addq $16,0,$0

mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

Unoptimized Code

Example: Output Assembly Code

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

CS 412/413 Spring 2008 Introduction to Compilers 23

Translation Correctness
• The generated code must execute precisely

the same computation as in the source code

• Correctness is very important!
– hard to debug programs with broken compiler…
– implications for development cost, security
– this course: techniques known to ensure correct

translation

CS 412/413 Spring 2008 Introduction to Compilers 24

How To Translate?

• Translation is a complex process
– source language and generated code are

very different

• Need to structure the translation
– Define intermediate steps
– At each step use a specific program

representation
– More machine-specific, less language-

specific as translation proceeds

CS 412/413 Spring 2008 Introduction to Compilers 25

cmp $0,ecx
cmovz edx,ecx

Simplified Compiler Structure
Source code

Understand
source code

Generate
assembly code

Assembly code

Front end
(machine-independent)

Back end
(machine-dependent)

if (b == 0) a = b;

Optimize

Intermediate code

Intermediate code

Optimizer

CS 412/413 Spring 2008 Introduction to Compilers 26

Simplified Front-End Structure
Source code
(character stream)

Lexical Analysis

Syntax Analysis

Token stream

Abstract syntax tree

Semantic Analysis

if (b == 0) a = b;
Lexical
errors

Syntax
errors

Semantic
errors

Abstract syntax tree

CS 412/413 Spring 2008 Introduction to Compilers 27

Analogy
• Front end can be explained by analogy to the

way humans understand natural languages

• Lexical analysis
– Natural language: “He wrote the program”

words: “he” “wrote” “the” “program”
– Programming language “if (b == 0) a = b”

tokens: “if” “(” “b” “==” “0” “)”
“a” “=” “b”

CS 412/413 Spring 2008 Introduction to Compilers 28

• Syntactic analysis
– Natural language:

He wrote the program
noun verb article noun
subject predicate object

sentence

– Programming language
if (b == 0) a = b

test assignment
if-statement

Analogy (ctd)

CS 412/413 Spring 2008 Introduction to Compilers 29

Analogy (ctd)
• Semantic analysis

– Natural language:
He wrote the computer

noun verb article noun
Syntax is correct; semantics is wrong!

– Programming language
if (b == 0) a = foo

test assignment
if a is an integer variable and foo is a procedure,
then the semantic analysis will report an error

CS 412/413 Spring 2008 Introduction to Compilers 30

Big Picture
Source code

Assembly code

Assembler Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

Linker

Loader

Lexical Analysis
Syntax Analysis

Semantic Analysis

Code Generation

Optimization
Compiler

CS 412/413 Spring 2008 Introduction to Compilers 31

Tentative Schedule
Lexical analysis 3 lectures
Syntax analysis 6 lectures
Semantic analysis 5 lectures
Prelim #1
Simple code generation 6 lectures
Analysis 8 lectures
Optimizations 3 lectures
Advanced topics 3 lectures
Prelim #2
Advanced topics 3 lectures

	CS412/413
	Outline
	General Information
	Important
	Textbooks
	Work Distribution
	Homeworks
	Project
	Assignments
	Why Take This Course?
	Why Take This Course? (ctd.)
	Why Take This Course? (ctd.)
	Why Take This Course? (ctd.)
	What Are Compilers?
	Examples
	In This Class
	Why Do We Need Compilers?
	Overall Compiler Structure
	Source Code
	Assembly and Machine Code
	Translation Efficiency
	Example: Output Assembly Code
	Translation Correctness
	How To Translate?
	Simplified Compiler Structure
	Simplified Front-End Structure
	Analogy
	Analogy (ctd)
	Analogy (ctd)
	Big Picture
	Tentative Schedule

