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Outline

• Course Organization
– General course information
– Homework & project information

• Introduction to Compilers
– What are they?
– Why do we need them? 
– What is their general structure?
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General Information

When
Where

MWF 10:10 - 11:00AM

Phillips 213

Instructor
Teaching Assistant

Tim Teitelbaum
TBD

Course staff email cs412-l@cs.cornell.edu

Web page courses.cs.cornell.edu/cs412

Newsgroup cornell.class.412 
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Important

• CS 413 is required!
• Large implementation project
• Substantial amount of theory
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Textbooks
• Optional texts

– Compilers -- Principles, Techniques and Tools 
(Dragon Book), by Aho, Sethi and Ullman (1986)

– Modern Compiler Implementation in Java, by 
Andrew Appel (2002)

– Engineering a Compiler, by Linda Torczon and 
Keith Cooper (2003)

• They will be on reserve in Engineering Library
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Work Distribution

• Theory:
– Homeworks = 20% 

• 4 homeworks: 5% each
– Exams = 35%

• 2 prelims: 17% and 18%; no final exam

• Practice:
– Programming Assignments = 45%

• 6 assignments: 5/9/9/9/9
• Project demo
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Homeworks

• 4 homework assignments
– Three assignments in first half of course
– One homework in second half

• Not done in groups
– do your own work
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Project
• Implementation:

– Designed language = a subset of Java
– Generated code = assembly x86
– Implementation language = Java

• 5 programming assignments

• Groups of 3-4 students
– Usually same grade for all
– Group information due Friday
– We will respect consistent preferences
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Assignments
• Due at beginning of class

– Homeworks: paper turn in (at beginning of class)
– Project files: electronic turn in (day before class)
– Assignments managed with Course Management 

System (CMS)

• Late homework, programming assignments 
increasingly penalized
– Penalty linearly increasing : 10% per day
– 1 day: 10%, 2 days: 20%, 3 days: 30%, etc.
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Why Take This Course?

• CS412/413 is an elective course

• Reason #1: understand compilers/languages
– Understand code structure 
– Understand language semantics
– Understand relation between source code 

and  generated machine code
– Become a better programmer 
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Why Take This Course? (ctd.)
• Reason #2: nice balance of theory and practice:

– Theory: 
• Lots of mathematical models: regular expressions, 

automata, grammars, graphs, lattices
• Lots of algorithms that use these models

– Practice:
• Apply theoretical notions to build a real compiler
• Better understand why “theory and practice are the 

same in theory, but different in practice”
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Why Take This Course? (ctd.)
• Reason #3: Programming experience

– Write a large program that manipulates 
complex data structures

– Learn how to be a better programmer in 
groups

– Learn more about Java and Intel x86 
architecture and assembly language
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Why Take This Course? (ctd.)
• Reason #4: Technical background for 

emerging field of software assurance
– Software assurance will be major priority of 

coming decade
– Bug-finding and security-violation finding tools 

build on compiler techniques
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What Are Compilers?
• Compilers translate information from one 

representation to another.
• Most commonly, the information is a program
• Typically 

– “Compilers” translate from high-level source code 
to low-level code (e.g., object code)

– “Translators” transform representations at the 
same level of abstraction
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Examples
• Typical compilers: gcc, javac 
• Non-typical compilers:

– latex (document compiler) :
• Transforms a LaTeX document into DVI printing commands
• Input information: document (not program)

– C-to-Hardware compiler: 
• Generates hardware circuits for C programs 
• Output is lower-level than typical compilers

• Translators:
– f2c : Fortran-to-C translator (both high-level)
– latex2html : LaTeX-to-HTML (both documents)
– dvi2ps: DVI-to-PostScript (both low-level)
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In This Class
• We will study typical compilation: from 

programs written in high-level languages to 
low-level object code and machine code

• Most of the principles and techniques in this 
course apply to non-typical compilers and 
translators
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Why Do We Need Compilers? 
• It is difficult to write, debug, maintain, and understand

programs written in assembly language

• Tremendous increase in productivity when first compilers 
appeared (about 55 years ago)

• There are still few cases when it is better to manually 
write assembly code
– E.g., to access low-level resources of the machine (device drivers)
– These code fragments are very small; the compiler handles the 

rest of the code in the application
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Overall Compiler Structure

High-level source code

Compiler

Low-level machine code
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Source Code

• Optimized for human readability
– Matches human notions of grammar
– Uses named constructs such as variables and 

procedures

int expr(int n)
{

int d;
d = 4 * n * n * (n + 1) * (n + 1);
return d;

}
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Assembly and Machine Code

• Optimized for hardware
– Consists of machine instructions; uses 

registers and unnamed memory locations
– Much harder to understand by humans

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1
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Translation Efficiency
• Goal: generate machine code that describes the 

same computation as the source code

• Is there a unique translation?  

• Is there an algorithm for an “ideal translation”? 
(ideal = either fastest or smallest generated code)

• Compiler optimizations = find better translations!
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Optimized Code
s4addq $16,0,$0

mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

Unoptimized Code

Example: Output Assembly Code

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1
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Translation Correctness
• The generated code must execute precisely 

the same computation as in the source code

• Correctness is very important!
– hard to debug programs with broken compiler…
– implications for development cost, security
– this course: techniques known to ensure correct 

translation
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How To Translate?

• Translation is a complex process 
– source language and generated code are 

very different

• Need to structure the translation
– Define intermediate steps
– At each step use a specific program 

representation
– More machine-specific, less language-

specific as translation proceeds
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cmp $0,ecx
cmovz edx,ecx

Simplified Compiler Structure
Source code

Understand 
source code

Generate
assembly code

Assembly code

Front end 
(machine-independent)

Back end
(machine-dependent)

if (b == 0) a = b;

Optimize

Intermediate code

Intermediate code

Optimizer 
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Simplified Front-End Structure
Source code
(character stream)

Lexical Analysis

Syntax Analysis

Token stream

Abstract syntax tree

Semantic Analysis

if (b == 0) a = b;
Lexical 
errors

Syntax
errors

Semantic 
errors

Abstract syntax tree
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Analogy
• Front end can be explained by analogy to the 

way humans understand natural languages

• Lexical analysis
– Natural language: “He wrote the program”

words: “he” “wrote” “the” “program”
– Programming language “if (b == 0) a = b”

tokens: “if” “(” “b” “==” “0” “)”
“a” “=” “b”
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• Syntactic analysis
– Natural language: 

He          wrote     the    program
noun         verb    article     noun
subject   predicate      object

sentence

– Programming language 
if ( b  ==  0 )    a = b

test      assignment
if-statement

Analogy (ctd)
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Analogy (ctd)
• Semantic analysis

– Natural language: 
He          wrote     the    computer

noun         verb    article     noun
Syntax is correct; semantics is wrong!

– Programming language 
if ( b  ==  0 )    a = foo

test        assignment
if a is an integer variable and foo is a procedure, 
then the semantic analysis will report an error
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Big Picture
Source code

Assembly code

Assembler Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

Linker

Loader

Lexical Analysis
Syntax Analysis

Semantic Analysis

Code Generation

Optimization
Compiler
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Tentative Schedule
Lexical analysis 3 lectures
Syntax analysis 6 lectures
Semantic analysis 5 lectures
Prelim #1
Simple code generation 6 lectures
Analysis 8 lectures
Optimizations 3 lectures
Advanced topics 3 lectures
Prelim #2
Advanced topics 3 lectures
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