Lecture 8
Denotational Semantics

10 September 2012
Announcements

- Homework #2 due tonight at 11:59pm
- Foster office hours today 4-5pm in Upson 4137
- Rajkumar office hours today 5-6pm in 4135
- Homework #3 goes out today
Recap

So far, we’ve:

- Formalized the operational semantics of an imperative language
- Developed the theory of inductive sets
- Used this theory to prove formal properties:
 - Determinism
 - Soundness (via Progress and Preservation)
 - Termination
 - Equivalence of small-step and large-step semantics
- Developed an implementation in OCaml
- Extended to IMP, a more complete imperative language

Today we’ll develop a denotational semantics for IMP
An operational semantics models how a program executes on an idealized machine:

\[
\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \quad \langle \sigma, e \rangle \downarrow \langle \sigma', n \rangle
\]
An operational semantics models how a program executes on an idealized machine:

\[\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \quad \langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle \]

A denotational semantics models what a program computes.
Denotational Semantics

An operational semantics models how a program executes on an idealized machine:

\[\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \quad \langle \sigma, e \rangle \downarrow \langle \sigma', \mathit{n} \rangle \]

A denotational semantics models what a program computes.

More specifically, a denotational semantics defines the meaning of a program directly, as a mathematical function:

\[C[c] \in \text{Store} \rightarrow \text{Store} \]
Syntax

\[a \in \text{Aexp} \quad a ::= x \mid n \mid a_1 + a_2 \mid a_1 \times a_2 \]

\[b \in \text{Bexp} \quad b ::= \text{true} \mid \text{false} \mid a_1 < a_2 \]

\[c \in \text{Com} \quad c ::= \text{skip} \mid x ::= a \mid c_1; c_2 \]

\[\quad \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \]
IMP

Syntax

\[a \in Aexp \quad a ::= \ x \mid n \mid a_1 + a_2 \mid a_1 \times a_2 \]
\[b \in Bexp \quad b ::= \ \text{true} \mid \text{false} \mid a_1 < a_2 \]
\[c \in Com \quad c ::= \ \text{skip} \mid x := a \mid c_1 ; c_2 \]
\[\quad \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \]

Semantic Domains

\[C[c] \in \text{Store} \rightarrow \text{Store} \]
\[A[a] \in \text{Store} \rightarrow \text{Int} \]
\[B[b] \in \text{Store} \rightarrow \text{Bool} \]
IMP

Syntax

\[a \in \text{Aexp} \quad a ::= \ x \mid n \mid a_1 + a_2 \mid a_1 \times a_2 \]

\[b \in \text{Bexp} \quad b ::= \ \text{true} \mid \text{false} \mid a_1 < a_2 \]

\[c \in \text{Com} \quad c ::= \ \text{skip} \mid x := a \mid c_1 ; c_2 \]

\[\quad \mid \text{if } b \text{ then } c_1 \text{ else } c_2 \mid \text{while } b \text{ do } c \]

Semantic Domains

\[\mathcal{C}[c] \in \text{Store} \rightarrow \text{Store} \]

\[\mathcal{A}[a] \in \text{Store} \rightarrow \text{Int} \]

\[\mathcal{B}[b] \in \text{Store} \rightarrow \text{Bool} \]

Why partial functions?
Conventions

Represent functions \(f : A \rightarrow B \) as sets of pairs:

\[
S = \{(a, b) \mid a \in A \text{ and } b = f(a) \in B\}
\]

such that, for each \(a \in A \), there is at most one pair \((a, _\) in \(S \). That is, \((a, b) \in S\) if and only if \(f(a) = b\).

Convention #2: Define functions point-wise.

Equation \(C[c] = S \) defines the denotation function \(C[__] \) on \(c \).
Denotational Semantics of IMP

\[A[n] = \{(\sigma, n)\} \]
\[A[x] = \{(\sigma, \sigma(x))\} \]
\[A[a_1 + a_2] = \{(\sigma, n) \mid (\sigma, n_1) \in A[a_1] \land (\sigma, n_2) \in A[a_2] \land n = n_1 + n_2\} \]

\[B[\text{true}] = \{(\sigma, \text{true})\} \]
\[B[\text{false}] = \{(\sigma, \text{false})\} \]
\[B[a_1 < a_2] = \{(\sigma, \text{true}) \mid (\sigma, n_1) \in A[a_1] \land (\sigma, n_2) \in A[a_2] \land n_1 < n_2\} \cup \{(\sigma, \text{false}) \mid (\sigma, n_1) \in A[a_1] \land (\sigma, n_2) \in A[a_2] \land n_1 \geq n_2\} \]

\[C[\text{skip}] = \{(\sigma, \sigma)\} \]
\[C[x := a] = \{(\sigma, \sigma[x \mapsto n]) \mid (\sigma, n) \in A[a]\} \]
\[C[c_1; c_2] = \{(\sigma, \sigma') \mid \exists \sigma''. ((\sigma, \sigma'') \in C[c_1] \land (\sigma'', \sigma') \in C[c_2])\} \]
\[C[\text{if } b \text{ then } c_1 \text{ else } c_2] = \{(\sigma, \sigma') \mid (\sigma, \text{true}) \in B[b] \land (\sigma, \sigma') \in C[c_1]\} \cup \{(\sigma, \sigma') \mid (\sigma, \text{false}) \in B[b] \land (\sigma, \sigma') \in C[c_2]\} \]
\[C[\text{while } b \text{ do } c] = \{(\sigma, \sigma) \mid (\sigma, \text{false}) \in B[b]\} \cup \{(\sigma, \sigma') \mid (\sigma, \text{true}) \in B[b] \land \exists \sigma''. ((\sigma, \sigma'') \in C[c] \land (\sigma'', \sigma') \in C[\text{while } b \text{ do } c])\} \]
Recursive Definitions

Problem: the last “definition” in our semantics is not really a definition!

\[
C[\text{while } b \text{ do } c] = \{(\sigma, \sigma) \mid (\sigma, \text{false}) \in B[b]\} \cup \\
\{(\sigma, \sigma') \mid (\sigma, \text{true}) \in B[b] \land \exists \sigma''. ((\sigma, \sigma'') \in C[c] \land \\
(\sigma'', \sigma') \in C[\text{while } b \text{ do } c])\}
\]

Why?
Recursive Definitions

Problem: the last “definition” in our semantics is not really a definition!

\[
\mathcal{C}[\textbf{while } b \textbf{ do } c] = \{(\sigma, \sigma) \mid (\sigma, \text{false}) \in \mathcal{B}[b]\} \cup \\
\{(\sigma, \sigma') \mid (\sigma, \text{true}) \in \mathcal{B}[b] \land \exists \sigma''. ((\sigma, \sigma'') \in \mathcal{C}[c] \land \\
(\sigma'', \sigma') \in \mathcal{C}[\textbf{while } b \textbf{ do } c])\}
\]

Why?

It expresses \(\mathcal{C}[\textbf{while } b \textbf{ do } c]\) in terms of itself.

So this is not a definition but a recursive equation.

What we want is the solution to this equation.
Recursive Equations

Example:

\[f(x) = \begin{cases}
0 & \text{if } x = 0 \\
 f(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]
Recursive Equations

Example:

\[f(x) = \begin{cases}
0 & \text{if } x = 0 \\
 f(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

Question: What functions satisfy this equation?
Recursive Equations

Example:

\[f(x) = \begin{cases}
0 & \text{if } x = 0 \\
 f(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

Question: What functions satisfy this equation?

Answer: \(f(x) = x^2 \)
Recursive Equations

Example:

\[g(x) = g(x) + 1 \]
Recursive Equations

Example:

\[g(x) = g(x) + 1 \]

Question: Which functions satisfy this equation?
Recursive Equations

Example:

\[g(x) = g(x) + 1 \]

Question: Which functions satisfy this equation?

Answer: None!
Recursive Equations

Example:

\[h(x) = 4 \times h \left(\frac{x}{2} \right) \]
Recursive Equations

Example:

\[h(x) = 4 \times h \left(\frac{x}{2} \right) \]

Question: Which functions satisfy this equation?
Recursive Equations

Example:

\[h(x) = 4 \times h \left(\frac{x}{2} \right) \]

Question: Which functions satisfy this equation?

Answer: There are multiple solutions.
Solving Recursive Equations

Returning the first example...

\[f(x) = \begin{cases}
0 & \text{if } x = 0 \\
 f(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]
Solving Recursive Equations

Can build a solution by taking successive approximations:

\[f_0 = \emptyset \]
Solving Recursive Equations

Can build a solution by taking successive approximations:

\[f_0 = \emptyset \]

\[f_1 = \begin{cases}
0 & \text{if } x = 0 \\
 f_0(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[= \{(0, 0)\} \]
Solving Recursive Equations

Can build a solution by taking successive approximations:

\[f_0 = \emptyset \]

\[f_1 = \begin{cases}
0 & \text{if } x = 0 \\
 f_0(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[f_1 = \{(0, 0)\} \]

\[f_2 = \begin{cases}
0 & \text{if } x = 0 \\
 f_1(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[f_2 = \{(0, 0), (1, 1)\} \]
Solving Recursive Equations

Can build a solution by taking successive approximations:

\[f_0 = \emptyset \]

\[f_1 = \begin{cases}
0 & \text{if } x = 0 \\
 f_0(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[= \{(0, 0)\} \]

\[f_2 = \begin{cases}
0 & \text{if } x = 0 \\
 f_1(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[= \{(0, 0), (1, 1)\} \]

\[f_3 = \begin{cases}
0 & \text{if } x = 0 \\
 f_2(x - 1) + 2x - 1 & \text{otherwise}
\end{cases} \]

\[= \{(0, 0), (1, 1), (2, 4)\} \]
Solving Recursive Equations

We can model this process using a higher-order function F that takes one approximation f_k and returns the next approximation f_{k+1}:

$$F : (\mathbb{N} \rightarrow \mathbb{N}) \rightarrow (\mathbb{N} \rightarrow \mathbb{N})$$

where

$$(F(f))(x) = \begin{cases}
0 & \text{if } x = 0 \\
 f(x - 1) + 2x - 1 & \text{otherwise}
\end{cases}$$
Fixed Points

A solution to the recursive equation is an f such that $f = F(f)$.

Definition: Given a function $F : A \to A$, we have that $a \in A$ is a fixed point of F if and only if $F(a) = a$.

Notation: Write $a = \text{fix}(F)$ to indicate that a is a fixed point of F.

Idea: Compute fixed points iteratively, starting from the completely undefined function. The fixed point is the limit of this process:

\[
 f = \text{fix}(F) \\
 = f_0 \cup f_1 \cup f_2 \cup f_3 \cup \ldots \\
 = \emptyset \cup F(\emptyset) \cup F(F(\emptyset)) \cup F(F(F(\emptyset))) \cup \ldots \\
 = \bigcup_{i \geq 0} F^i(\emptyset)
\]
Denotational Semantics for **while**

Now we can complete our denotational semantics:

\[C[\textbf{while } b \textbf{ do } c] = \text{fix}(F) \]
Now we can complete our denotational semantics:

\[C[\text{while } b \text{ do } c] = \text{fix}(F) \]

where

\[
F(f) = \{ (\sigma, \sigma) \mid (\sigma, \text{false}) \in B[b] \} \cup \\
\{ (\sigma, \sigma') \mid (\sigma, \text{true}) \in B[b] \land \\
\exists \sigma''. ((\sigma, \sigma'') \in C[c] \land (\sigma'', \sigma') \in f) \}
\]