In this lecture, we will develop a proof of type soundness for Featherweight Java in the usual way, as a corollary of progress and preservation. The details of these proofs will be a little different than the ones we have seen before, however, due to the presence of subtyping and casts.

1 Preservation

The proof of preservation relies on several supporting lemmas.

Lemma (Method Typing). If \(\text{mtype}(m, C) = D \rightarrow D \) and \(\text{mbody}(m, C) = (\pi, e) \) then there exists types \(C' \) and \(D' \) such that \(\pi : D \), this : \(C' \vdash e : D' \) and \(D' \leq D \).

Lemma (Substitution). If \(\Gamma, \pi : B \vdash e : C \) and \(\Gamma \vdash \overline{u} : B' \) with \(B' \leq B \) then there exists \(C' \) such that \(\Gamma \vdash [\pi \mapsto \overline{u}] e : C' \) and \(C' \leq C \).

Lemma (Weakening). If \(\Gamma \vdash e : C \) then \(\Gamma, x : B \vdash e : C' \).

Lemma (Decomposition). If \(\Gamma \vdash E[e] : C \) then there exists a type \(B \) such that \(\Gamma \vdash e : B \)

Lemma (Context). If \(\Gamma \vdash E[e] : C \) and \(\Gamma \vdash e : B \) and \(\Gamma, \delta : B' \vdash e' : B' \) with \(B' \leq B \) then there exists a type \(C' \) such that \(\Gamma \vdash E[e'] : C' \) and \(C' \leq C \).

Lemma (Preservation). If \(\Gamma \vdash e : C \) and \(e \rightarrow e' \) then there exists a type \(C' \) such that \(\Gamma \vdash e' : C' \) and \(C' \leq C \).

Proof. By induction on \(e \rightarrow e' \), with a case analysis of the last rule used in the derivation.

Case E-Context: \(e = E[e_1] \) and \(e_1 \rightarrow e'_1 \) and \(e' = E[e'_1] \)

By the decomposition lemma we have that there exists a type \(B \) such that \(\Gamma \vdash e_1 : B \). By the induction hypothesis applied to \(e_1 \) we have that there exists a type \(B' \) such that \(\Gamma \vdash e'_1 : B' \) and \(B' \leq B \). Then, by the context lemma we have that there exists a type \(C' \) such that \(\Gamma \vdash E[e'_1] : C' \) and \(C' \leq C \), as required.

Case E-Proj: \(e = \text{new } C_0(\overline{v}).f_1 \) and \(e' = v_i \) with \(\text{fields}(C_0) = \overline{C_f} \)

As the typing rules for Featherweight Java are syntax-directed, the last rule used in the derivation of \(\Gamma \vdash e : C \) must have been T-Field. Therefore we must also have a derivation \(\Gamma \vdash \text{new } C_0(\overline{v}) : D_0 \) with \(\text{fields}(D_0) = D g \) and \(C = D_i \). By a similar argument, the last rule used in this derivation must have been T-New and so \(D_0 = C_0 \) and we have derivations \(\Gamma \vdash \overline{v} : B \) with \(B \leq D_i \). From \(D_0 = C_0 \) (and as \(\text{fields} \) is a function) we have \(\overline{C_f} = D g_i \), and hence \(C = C_i \). Thus, \(\Gamma \vdash v_i : B_i \) with \(B_i \leq C_i \), as required.
Case E-Invk: \[e = (\text{new } C_0(\overline{v})).m(\overline{u}) \text{ and } e' = [\overline{x} \mapsto \overline{u}, \text{this} \mapsto \text{new } C_0(\overline{v})]e \text{ with } m_{\text{body}}(m, C_0) = (\overline{x}, e) \]

By similar reasoning as in the previous case, the last two rules in the derivation of \(\vdash e : C \) must have been T-Invk and T-New with \(\Gamma \vdash \text{new } C_0(\overline{v}) : C_0 \) and \(\Gamma \vdash \pi : B \) and \(m_{\text{type}}(m, C_0) = \overline{C} \rightarrow C \) with \(B \leq \overline{C} \). By the method typing lemma, there exist types \(C'_0 \) and \(C' \) such that \(\overline{x} : C ; \text{this} : C'_0 \vdash e : C' \). By the substitution lemma we have \(\vdash [\overline{x} \mapsto \overline{u}, \text{this} \mapsto \text{new } C_0(\overline{v})]e : C'' \) with \(C'' \leq C' \). By weakening we have \(\vdash [\overline{x} \mapsto \overline{u}, \text{this} \mapsto \text{new } C_0(\overline{v})]e : C'' \). The required result follows as \(C'' \leq C \) by S-Trans.

Case E-Cast: \[e = (C) \text{ (new } C_0(\overline{v})) \text{ and } e' = \text{new } C_0(\overline{v}) \text{ with } C_0 \leq C \]

By similar reasoning as the previous cases, the last two rules in the derivation of \(\Gamma \vdash e : C \) must have been T-UCast and T-New with \(\Gamma \vdash \text{new } C_0(\overline{v}) : C_0 \). The result is immediate as \(C_0 \leq C \).

\[\square \]

2 Progress

The proof of progress also relies on a few supporting lemmas.

Lemma (Canonical Forms). If \(\vdash v : C \) then \(v = \text{new } C(\overline{v}) \).

Lemma (Inversion).

1. If \(\vdash (\text{new } C(\overline{v})).f_i : C_i \) then fields(C) = \(\overline{C} \setminus \overline{f} \) and \(f_i \in \overline{f} \).
2. If \(\vdash (\text{new } C(\overline{v})).m(\overline{u}) : C \) then \(m_{\text{body}}(m, C) = (\overline{x}, e) \) and \(|\overline{u}| = |\overline{v}| \).

Lemma (Progress). Let \(e \) be an expression such that \(\vdash e : C \). Then either:

1. \(e \) is a value,
2. there exists an expression \(e' \) such that \(e \rightarrow e' \), or
3. \(e = E[(B) \ (\text{new } A(\overline{v}))] \) with \(A \nleq B \).

Proof. By induction on \(\vdash e : C \), with a case analysis on the last rule used in the derivation.

Case T-Var: \(e = x \) with \(\emptyset(x) = C \)

Can’t happen, as \(\emptyset(x) \) is undefined.

Case T-Field: \(e = e_0.f \) with \(\vdash e_0 : C_0 \) and \(\text{fields}(C_0) = \overline{C} \setminus \overline{f} \) and \(C = C_i \)

By the induction hypothesis applied to \(e_0 \) we have that either \(e_0 \) is a value, there exists \(e'_0 \) such that \(e_0 \rightarrow e'_0 \), or there exists \(E \) such that \(e_0 = E_0[(B) \ (\text{new } A(\overline{v}))] \) with \(A \nleq B \). We analyze each of these subcases:

1. If \(e_0 \) is a value then by the canonical forms lemma, \(e_0 = \text{new } C_0(\overline{v}) \) and by the inversion lemma \(f \in \overline{f} \). By E-Proj we have \(e \rightarrow v_i \).
Alternatively, if there exists an expression such that \(e_0 \to e'_0 \) then by E-CONTEXT we have \(e = E[e_0] \to E[e'_0] \) where \(E = [\cdot].f \).

3. Otherwise, if \(e_0 = E_0[(B) \new A(\overline{\sigma})] \) with \(A \not\subseteq B \) then we have \(e = E[(B) \new A(\overline{\sigma})] \) where \(E = [\cdot].f \), which finishes the case.

Case T-Invk: \(e = e_0.m(\overline{\sigma}) \) with \(e_0 : C_0 \) and \(m\text{type}(m, C_0) = \overline{B} \to C \) and \(\vdash \overline{\sigma} : \overline{A} \) and \(\overline{A} \leq \overline{B} \)

By the induction hypothesis applied to \(e_0 \) we have that either \(e_0 \) is a value, there exists \(e'_0 \) such that \(e_0 \to e'_0 \), or there exists \(E \) such that \(e_0 = E_0[(B) \new A(\overline{\sigma})] \) with \(A \not\subseteq B \). We analyze each of these subcases:

1. If \(e_0 \) is a value then by the canonical forms lemma, \(e_0 = \text{new} C_0(\overline{\sigma}) \). If \(\overline{\sigma} \) is a list of values \(\overline{\sigma} \), then by the inversion lemma we have \(|\overline{\sigma}| = |\overline{\tau}| \) where \(m\text{body}(m, C_0) = (\overline{\sigma}, e'_0) \). By E-INVK we have \(e \to [\overline{\sigma} \mapsto \overline{\tau}, \text{this} \mapsto \text{new} C_0(\overline{\sigma})] e'_0 \). Otherwise, let \(i \) be the least index of an expression in \(\overline{\sigma} \) that is not a value. By the induction hypothesis applied to \(e_i \) we have that \(e_i \) is a value, or there exists \(e'_i \) such that \(e_i \to e'_i \) or there exists \(E_i \) such that \(e_i = E_i[(B) \new A(\overline{\sigma})] \) and \(A \not\subseteq B \). In the first subsubcase, then we have a contradiction to our assumption that \(i \) is the index of the least expression in \(\overline{\sigma} \) that is not a value. Otherwise let \(E = (\text{new} C_0(\overline{\sigma})).m(e_1, \ldots, e_{i-1}, e_i, e_{i+1}, \ldots, |\overline{\sigma}|) \). In the second subcase, we have \(e = E[e_i] \to E[e'_i] \) by E-CONTEXT. In the third subcase, we have \(e = E[(B) \new A(\overline{\sigma})] \) with \(A \not\subseteq B \).

2. Alternatively, if there exists an expression such that \(e_0 \to e'_0 \) then by E-CONTEXT we have \(E[e_0] \to E[e'_0] \) where \(E = [\cdot].m(\overline{\sigma}) \).

3. Otherwise, if \(e_0 = E_0[(B) \new A(\overline{\sigma})] \) with \(A \not\subseteq B \) then we have \(e = E[(B) \new A(\overline{\sigma})] \) where \(E = [\cdot].m(\overline{\sigma}) \), which finishes the case.

Case T-New: \(e = \text{new} C(\overline{\sigma}) \) and \(\text{fields}(C) = \overline{C} \) and \(\vdash \overline{\sigma} : \overline{B} \) and \(\overline{B} \leq \overline{C} \)

If \(\overline{\sigma} \) is a list of values \(\overline{\sigma} \), then \(e \) is a value. Otherwise, let \(i \) be the least index of an expression in \(\overline{\sigma} \) that is not a value. By the induction hypothesis applied to \(e_i \) we have that \(e_i \) is a value, or there exists \(e'_i \) such that \(e_i \to e'_i \) or there exists \(E_i \) such that \(e_i = E_i[(B) \new A(\overline{\sigma})] \) and \(A \not\subseteq B \). We analyze each of these subcases:

1. If \(e_i \) is a value then we have a contradiction to our assumption that \(i \) is the index of the least expression in \(\overline{\sigma} \) that is not a value.
2. If there exists \(e'_i \) such that \(e_i \to e'_i \) then let \(E = (\text{new} C(e_1, \ldots, e_{i-1}, e_i, e_{i+1}, \ldots, |\overline{\sigma}|) \). By E-CONTEXT we have \(e = E[e_i] \to E[e'_i] \).
3. Otherwise, if there exists \(E \) with \(e_i = E_i[(B) \new A(\overline{\sigma})] \) and \(A \not\subseteq B \) then let \(E = (\text{new} C(e_1, \ldots, e_{i-1}, e_i, e_{i+1}, \ldots, |\overline{\sigma}|) \). By construction we have \(e = E[(B) \new A(\overline{\sigma})] \), which finishes the case.

Case T-UCast: \(e = (C) e \) with \(\vdash e_0 : D \) and \(D \leq C \)

By the induction hypothesis applied to \(e_0 \) we have that either \(e_0 \) is a value, there exists \(e'_0 \) such that \(e_0 \to e'_0 \), or there exists \(E \) such that \(e_0 = E_0[(B) \new A(\overline{\sigma})] \) with \(A \not\subseteq B \). We analyze each of these subcases:

1. If \(e_0 \) is a value then by the canonical forms lemma, \(e_0 = \text{new} D(\overline{\sigma}) \). By E-Cast we have \(e \to \text{new} D(\overline{\sigma}) \).
2. Alternatively, if there exists an expression such that $e_0 \to e'_0$ then by E-CONTEXT we have $e = E[e_0] \to E[e'_0]$ where $E = (C) \mathllap{[\cdot]}$.

3. Otherwise, if $e_0 = E_0[(B) \text{new } A(\overline{v})]$ with $A \not\subseteq B$ then we have $e = E[(B) \text{new } A(\overline{v})]$ where $E = (C) \mathllap{[\cdot]}$, which finishes the case.

Case T-DCast: $e = (C) e$ with $\vdash e_0 : D$ and $C \leq D$ and $C \not= D$

By the induction hypothesis applied to e_0 we have that either e_0 is a value, there exists e'_0 such that $e_0 \to e'_0$, or there exists E such that $e_0 = E_0[(B) \text{new } A(\overline{v})]$ with $A \not\subseteq B$. We analyze each of these subcases:

1. If e_0 is a value then by the canonical forms lemma we have that $e = \text{new } D(\overline{v})$. Let $E = [\cdot]$. We immediately $e = E[(C) \text{new } C(\overline{v})]$ with $D \not\subseteq C$.

2. Alternatively, if there exists an expression such that $e_0 \to e'_0$ then by E-CONTEXT we have $e = E[e_0] \to E[e'_0]$ where $E = (C) \mathllap{[\cdot]}$.

3. Otherwise, if $e_0 = E_0[(B) \text{new } A(\overline{v})]$ with $A \not\subseteq B$ then we have $e = E[(B) \text{new } A(\overline{v})]$ where $E = (C) \mathllap{[\cdot]}$, which finishes the case.

Case T-SCast: similar to the previous case.