CS 381

Supplement to Reba's lecture: Computing L(G) for CFG G 10/15/01

First, let me give you a nice clean version of the proof I did in class:

Let
$$G = (\Sigma, N, P, S)$$
, where $\Sigma = \{a, b\}, N = \{S\}, P = \{S \to \varepsilon, S \to aSb\}$

Claim: $L(G) = \{a^n b^n \mid n \in \mathbb{N}\}$

Proof:

 $\{a^nb^n\mid n\in\mathbb{N}\}\subseteq L(G)$: We proceed by induction on n. Base case: if $n=0,\ a^nb^n=\varepsilon\in L(G)$ since $S\to\varepsilon$ is a production in P. Inductive step: Suppose $a^nb^n\in L(G)$. Then there exists a derivation $S\stackrel{\star}{\subset} a^nb^n$. Now, this gives us the derivation $S\stackrel{\star}{\subset} aSb\stackrel{\star}{\subset} a(a^nb^n)b=a^{n+1}b^{n+1}$, where the first arrow is via the production $S\to aSb$, and the second is via the derivation that must exist by the inductive hypothesis.

 $L(G)\subseteq \{a^nb^n\mid n\in\mathbb{N}\}$: For $x\in L(G)$, we proceed by induction on the length of the G-derivation of x. Base case: if $S\overset{\rightharpoonup}{G}x$, then $x=\varepsilon=a^0b^0$. Inductive step: Assume that if $S\overset{m}{G}$ then $x=a^nB^n$ for some $n\in\mathbb{N}$. Now suppose $S\overset{m+1}{G}x$. This derivation must begin with the production $S\to aSb$, so it has the form $S\overset{1}{G}aSb\overset{m}{G}$. But then x=ayb for some $y\in\Sigma^*$ such that $S\overset{m}{G}y$. Now, by the inductive hypothesis, $y=a^nb^n$ for some $n\in\mathbb{N}$, so $x=a(a^nb^n)b=a^{n+1}b^{n+1}$ for that n.

Here's another, more difficult example, taken from *Introduction to Automata Theory, Languages, and Computation* by Hopcroft and Ullman . Let $G = (\Sigma, N, P, S)$, where $\Sigma = \{a, b\}$, $N = \{S, A, B\}$, and $P = \{S \rightarrow aB, S \rightarrow bA, A \rightarrow a, A \rightarrow aS, A \rightarrow bAA, B \rightarrow b, B \rightarrow bS, B \rightarrow aBB\}$.

Claim: $L(G) = \{w \in \{a, b\}^+ \mid \#_a(w) = \#_b(w)\}$

Proof:

Inductive Hypothesis: For $w \in \{a, b\}^+$,

- 1. $S \stackrel{*}{\stackrel{\circ}{G}} w$ if and only if w contains an equal number of a's and b's.
- 2. $A \stackrel{*}{G} w$ if and only if w has one more a than it has b's.
- 3. $B \stackrel{*}{\xrightarrow{G}} w$ if and only if w has one more b than it has a's.

We proceed by induction on |w|. Base case: If |w| = 1, then either w = a, or w = b. Since no string of length 1 is derivable from S, part 1 of the inductive hypotheses holds. Part 2 holds because the production $A \to a$ is in P, and because this production and $B \to b$ are the only ones that don't increase the length of the string to which they are applied (thus, a is the only string of length 1 derivable from A). Similarly, part 3 holds.

Inductive step. Assume that the inductive hypothesis holds for all w such that $|w| \leq k - 1$. We show that part 1 of the induction hypothesis holds for |w| = k. (Showing parts 2 and 3 is similar and left to the reader.)

Suppose |w| = k, and $S \stackrel{*}{\overset{*}{G}} w$. We must show that w contains an equal number of a's and b's. Now, the derivation must begin with either $S \stackrel{*}{\overset{*}{G}} aB$ or $S \stackrel{*}{\overset{*}{G}} bA$. In the former case, w has the form aw_1 , where $|w_1| = k - 1$, and $B \stackrel{*}{\overset{*}{G}} w_1$. By the inductive hypothesis, the number of b's in w_1 is one more than the number of a's, so w has an equal number of a's and b's. The latter case is analogous.

Now, suppose |w|=k, and w has an equal number of a's and b's. We must show that $w \in L(G)$. Either the first letter of w is an a, or it is a b. Assume $w=aw_1$. Then $|w_1|=k-1$, and w_1 has one more b than it has a's, so by the inductive hypothesis, $B \overset{*}{G} w_1$. Thus, we have a derivation $S \overset{*}{G} aB \overset{*}{G} aw_1 = w$. If, instead, the first letter of w is b, the argument is analogous.