CS381 Fall 2001 – Homework 6 Prof Shai Ben-David

DUE: Monday, November 12, 9:05 am

NOTE: EVERY claim you make should be supported by an explanation or a proof

Describe an algorithm that on input -a DFA, M, outputs the answer to:
"Is L(M) infinite?"

(HINT: As a first step prove that L(M) is infinite if and only if $L(M) \cap \{w : n \le |w| \le 2n\} \neq \emptyset \text{ (where n is the number of states in M)}.$

- 2. Construct Turing machines that compute the following languages:
 - (a) $\{a^{2^n}: n \in N\}$
 - (b) $\{a^nb^kc^{n+k}: n, k \in N\}$
 - (c) $\{w \in \{0,1\}^* : |w| \text{ is even and there exists } i \leq \frac{|w|}{2} \text{ such that for all }$ $j < i, a_j = a_{\frac{|w|}{2} + j} \text{ and } a_i = 1 \text{ and } a_{\frac{|w|}{2} + i} = 0\}$ (where a_i is the i^{th} bit of w).