CS 381 HW 4

Due Friday October 19th 2001

1) Let $M=(Q,\Sigma,q_0,\delta,F)$ be a DFA, and $k\in\mathbb{N}$. Define a relation E_k over Q as follows:

$$(p,q) \in E_k$$
 (i.e. $p \sim_{E_k} q$) if for every $z \in \Sigma^*$ with $|z| > k$, $\hat{\delta}(p,z) \in F \Leftrightarrow \hat{\delta}(q,z) \in F$.

- (i) Prove that E_k is an equivalence relation (i.e., that it is reflexive, transitive, and symmetric).
 - (ii) Describe the equivalence classes of E_0 .
 - (iii) Prove, for all $p, q \in Q$, that if $p \sim_{E_k} q$ then $p \sim_{E_{k-1}} q$.
 - (iv) Prove that

$$\begin{aligned} p \sim_{E_{k+1}} q &\iff \\ p \sim_{E_k} q & and & \forall \sigma \in \Sigma, \ \delta(p,\sigma) \sim_{E_k} \delta(q,\sigma) \end{aligned}$$

- **2)** Recall that a relation R over Σ^* is called *right-invariant* if $\forall w, w', z \in \Sigma^*$, if $(w, w') \in R$, then $(wz, w'z) \in R$. Similarly, we say that R is *left-invariant* if $\forall w, w'z, \in \Sigma^*$, if $(w, w') \in R$, then $(zw, zw') \in R$.
- (i) Find a relation R over $\{0,1\}^*$ that is right-invariant but not left-invariant. Prove it!
- (ii) Find a relation R over $\{0,1\}^*$ that is left-invariant but not right-invariant. Prove it!
- (iii) Find a non-trivial relation over $\{0,1\}^*$ that is both left-invariant and right-invariant. Prove it!
- **3)** Find L(G) for the following grammar: $G = (\{A, B\}, \{a, b\}, P, A)$, where $P = \{A \to bBa, B \to bB, B \to \varepsilon\}$. Prove your claim.

- 4) For each of the following languages L, find a context-free grammar such that L(G)=L. Prove it.
 - (i) $L = \{w \in \{0,1\}^* \mid \#_0(w) = \#_1(w)\}$
 - (ii) $L = \{a^i b^j \mid i = 3j + 2\}$