CS 3220 Homework 8

out: Tuesday 7 April 2009
due: Monday 13 April 2009

Problem 1: Approximate de-projection.

Given a 31-vector s, consider its products with two 3 x 31 matrices, C and E. In a
particular system I get to observe the product Cs (which is a 3-vector), but what I
actually need is the product Es.

I would like to ask the question “Given Cs for some s, find the vector Es.” Sadly,
this cannot be done, in general.

1. Given the matrices E and C, explain how to construct two vectors s, and s
so that Cs, = Cs; but Es, # Es;,.

Given the failure to solve the problem exactly, we can look for another problem,
which we can solve, that approximates the original problem.

2. Suppose s is guaranteed to be a linear combinations of three fixed vectors s,
s2, and s3. Explain how to compute a 3 x 3 matrix M that answers the original
question. That is, given Cs, multiplying it by M should compute Es.

We have removed the ambiguity that made the original problem impossible by in-
troducing an assumption about the input s—we could say we are “imposing a low-
dimensional linear model on s.”

Problem 2: Camera color correction.

The application that underlies the previous problem is color correction for digital
cameras. Color cameras measure the distribution of light energy across different
wavelengths; for this purpose it is sufficiently accurate to think of light as existing
at a number of distinct wavelengths, 400, 410, 420, ..., 700 nanometers, so that a
spectrum is a 31-vector giving the amount of energy at each wavelength.

Each pixel of a digital camera makes three measurements of the wavelength spectrum
coming in through the lens—these are the red, green, and blue color signals. Each of



CS 3220 Homework 8 2

the three color signals is a sum of energy at all wavelengths, waited by the spectral
sensitivity of the sensor for that color. For example, if the red signal is R,

31
R = E TiS;
1=1

where 7; is the sensitivity of the red sensor to light at the i wavelength. This is a
dot product of 31-vectors: r’s. If we stack up the three sensitivity vectors as the
rows of a matrix C, then the three color signals, as a 3-vector [R G B]T, are Cs. So
multiplication by C models the color detection process in the camera.

As it turns out, the human eye senses colors in very much the same way as a
camera. So there is another matrix E that describes how the eye makes three linear
measurements of a spectrum. Color scientists use the letters X, Y, and Z for the
eye’s three color signals, so [X Y Z]T = Es. Multiplication by E models color
detection in the eye.

The math of the previous problem tells us how to take the colors from the camera
and compute colors as seen by the eye, if the spectra all come from a 3D subspace.
So we can use that math if we can come up with a reasonable linear model for the
spectra we’ll find in the world; the accuracy will depend on how well we really can
describe all spectra with three basis spectra.

1. Use the SVD to find a 3D subspace that best approximates the set of “rep-
resentative” spectra provided with this homework. Plot your three “principal
spectra.”

2. Use the resulting three principal spectra to compute a color correction matrix
M that maps camera RGB colors to XYZ colors, for each of the two cameras
“Camera 1”7 and “Camera 2.”

3. Which of these matrices will magnify noise in the input image more, in the
sense of relative error? How can you tell?

4. Compute the camera RGB colors for the 24 provided test spectra (they are
the spectra of the squares of the color test chart that’s shown in some of the
images), the true XYZ colors of those spectra, and the XYZ colors computed
by your matrix from the RGB colors. Report the error (as 2-norm in XYZ
space) in each of the 24 colors for each camera.

Congratulations—you’ve now implemented a state-of-the-art color calibration method
similar to what’s used by camera manufacturers. For fun, apply this matrix to the
provided raw-color camera images to see how the color comes out.

For further fun, do the same process using the provided sensitivity matrix for Camera
3, a hypothetical 5-color camera, and see how the error changes.



