
CS 322: Assignment P4

Due: Wednesday, April 10, 2002 (In Lecture)

You may work in pairs. Follow the course rules for the submission of assignments. Do not submit work unless you have
adhered to the principles of academic integrity as descibed on the course website. Points will be deducted for poorly
commented code, redundant computation that seriously effects efficiency, and failure to use features of Matlab that
are part of the course syllabus.

Part A. Band Cholesky (8 Points) If A ∈ IRn×n is symmetric and positive definite then there exists a lower triangular
matrix G ∈ IRn×n such that A = GGT . Here is one algorithm for computing G:

function G = CholSax(A)

% G = CholSax(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A);

G = zeros(n,n);

s = zeros(n,1);

for j=1:n

s(j:n) = A(j:n,j);

for k=1:j-1

s(j:n) = s(j:n) - G(j:n,k)*G(j,k);

end

G(j:n,j) = s(j:n)/sqrt(s(j));

end

If A has upper (and lower) bandwidth equal to p, then it turns out that G has lower bandwidth p. Modify CholSax so
that it exploits this property. In particular, implement the following function

function G = CholSaxBand(A,p)

% G = CholSaxBand(A,p)

% Cholesky factorization of a symmetric and positive definite matrix A

% which has bandwidth p, 1<=p<=n-1.

% G is lower triangular so A = G*G’.

Whereas CholSax involves n3/3 flops, CholSaxBand should involve just O(p2n) flops if p << n. To obtain the reduced
flopcount you need to “abbreviate” the vector operations that are part of CholSax. For example, when bandedness is
exploited, the assignment s(j:n) = A(j:n,j) can be replaced by s(j:r,n) = A(j:r,j) where r = min(j+p,n).

Test your implementation on the script P4A which is available on the website. Also on the website are UTriSolBand

and LTriSolBand, the banded versions of UTriSol and LTriSol respectively. These are needed for Part B, but they
may get you thinking the right way about band matrix computations.

Part B. Least Squares Fitting with Cubic Splines (12 Points) Suppose h > 0 and x1 are given and define
xj = x1 + (j − 1)h for all integers j. Define the piecewise cubic function Bj(x) by

Bj(x) =
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Below is a depiction of B−2(x), B−1(x), B0(x), B1(x) and B2(x) for the case when h = 1 and x1 = 1.
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It is straightforward to show that these piecewise cubic functions are continuous and have a continuous first and second
derivative. In other words, they are cubic splines. We refer to the Bj as basis splines. Here are some additional facts:

• Only four Bj are nonzero on the interval [xj , xj+1], namely, Bj−1, Bj , Bj+1, and Bj+2.

• Any linear combination of the Bj is also a cubic spline. In particular,

B(x) =

R∑
j=L

αjBj(x)

is continuous and has continuous first and second derivatives.

We are now set to show how to do least squares fitting with cubic splines. Suppose we are given data (z1, y1), . . . , (zm, ym)
with

z1 < z2 < · · · < zm

Let n be an integer that satisfies 2 ≤ n ≤ m − 2 and set h = (zm − z1)/(n − 1) and x1 = z1. Our goal is to compute
α0, α1, . . . , αn, αn+1 so that

φ(α0, α1, . . . , αn, αn+1) =
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)2

is as small as possible. A standard manipulation shows that

φ(α0, α1, . . . , αn, αn+1) = ‖ Fα − y ‖2
2

where

Fα − y =
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The requirement n ≤ m − 2 means that the F -matrix has at least as many rows as columns. Moreover, if zi is in the
interval [xj , xj+1] then the only nonzero elements in F (i, :) are Fi,j , Fi,j+1, Fi,j+2 and Fi,j+3.

Another observation is that F (:, j1)
T F (:, j2) = 0 if |j1 − j2| > 4. This is because the product of the functions Bj1−1

(associated with column j1) and Bj2−1 (associated with column j2) is the zero function. This means that if we solve
the least squares problem via the normal equations F T Fα = F T y then A = F T F has bandwidth p = 4.
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Implement the function

function alfa = LSSpline(z,y,n)

% z and y are column m-vectors and 2 <= n <= m-2.

% Assume z(1) < z(2) < ... < z(m).

% alfa is a column (n+2)-vector with the property that if

%

% alfa’ = [alpha(0),...,alpha(n+1)]

%

% then

%

% alpha(0)B_{0}(x) + alpha_{1}B_{1}(x) + ... + alpha_{n+1}B_{n+1}(x)

%

% is the least squares fit of (z(1),y(1)),...,(z(m),y(m)). Here, B_{0},...,B_{n+1}

% are the basis splines associated with x(j) = a + (j-1)h, j=0:n+1, h = (z(m)-z(1))/(n-1).

Use the method of normal equations and make use of CholSaxBand, LtriSolBand, and UTriSolBand. (The latter two
functions are available on the website.) Set up the F -matrix explicitly and to facilitate this write the following function

function [f,j] = BEval(zVal,a,b,m,n)

% zVal is a scalar that satisfies a <= z <= b.

% m and n are integers that satisfy 2 <= n <= m-2.

% Let h = (b-a)/(n-1) and define x(k) = a + (k-1)h for any integer k.

% f is a row 4-vector and j is a positive integer such that

% x(j) <= zVal <= x(j+1) and f = [B_{j-1}(zVal) B_{j}(zVal) B_{j+1}(zVal) B_{j+2}(zVal) ],

% i.e., the values of the four nonzero basis splines at zVal.

A vector version of this (with zVal a vector) is possible but we’ll skip that embellishment in this assignment.
Exploit the sparsity of F when you compute A = F T F and c = F T y in LSSpline.
Download the file SunSpotArea.txt from the website (as in P2) and run the script P4B. It produces plots of various

least squares fits of the sunspot data. Make sure SunSpotArea.txt is in whatever directory houses the .m files associated
with this problem.
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