
CS 322: Assignment P3

Due: Friday, March 8, 2002, 4:30pm (in Upson 4130)1

You may work in pairs. Follow the course rules for the submission of assignments. Do not submit work unless you have

adhered to the principles of academic integrity as descibed on the course website. Points will be deducted for poorly

commented code, redundant computation that seriously effects efficiency, and failure to use features of Matlab that

are part of the course syllabus.

Part A (8 pts) Kepler’s Second Law

Kepler’s First Law states that the planets have elliptical orbits with the Sun at one focus. The size
and elongation of the orbit are completely defined by the planet-Sun separation at perihelion and aphelion.
Designate these values by P and A (0 < P ≤ A). If we situate the Sun at (0,0), the perihelion point at (P, 0),
and the aphelion point at (−A, 0), then the orbit is the set of points E(P, A) = {(x(τ), y(τ)) | 0 ≤ τ ≤ 2π}
where

x(τ) =
P − A

2
+

P + A

2
cos(τ)

y(τ) =
√

AP sin(τ).

In polar coordinates E(P, A) = {(θ, r(θ)) | 0 ≤ θ ≤ 2π} where

r(θ) =
2AP

P (1 − cos(θ)) + A(1 + cos(θ))
.

(Here, θ is the polar angle and r(θ) is the length of the radius vector.) The area “swept out” by the radius
vector as it “rotates” from θ = θ1 to θ = θ2 is given by

α(θ1, θ2) =
1
2

∫ θ2

θ1

r(θ)2dθ.

Kepler’s Second Law states that the radius vector sweeps out area at a constant rate. In particular, if T is
the period of revolution, then

t(θ1, θ2) =
α(θ1, θ2)
α(0, 2π)

T

is the time it takes the planet to move from (θ1, r(θ1)) to (θ2, r(θ2)). In the picture, each of the 12 sectors has
equal area. If the period of revolution is 360 days and the planet is at the perihelion point (P, 0) at t = 0, then

1May also be submitted in lecture or section.



it would pass into a new sector every 30 days as it moved counterclockwise in its orbit.
You will produce an animation of the orbiting planet using the built-in Matlab function comet. You

first need to precompute planet locations as a function of time. At first glance it looks like we have some
time-consuming numerical integrations to perform for each t-value. A way around this is to construct a cubic
spline S with the property that θ = S(t) is a good approximation to the polar angle of the planet at time t.
Here is how to construct S:

• Let nSect be a positive integer ≥ 2 and set θ = linspace(0, 2π, nSect + 1). Our plan is to break up the
area enclosed by the ellipse into nSect sectors. The sectors will have unequal areas even though as “pizza
slices” they have identical “pizza angles”.

• For k = 1:nSect use Simpson’s rule to compute an estimate αk of the true sector area α(θk, θk+1).

• Define t1, . . . , tn+1 by

tk =




0 k = 1

T
α1 + · · · + αk−1
α1 + · · · + αn

k = 2:n + 1

Kepler says that the planet has polar angle θk at time tk. (Well, not quite since the αk are Simpson rule
estimates of the true sector areas.) We are assuming that at t = 0 the planet has polar angle 0, i.e., it is
situated at the perihelion point (x, y) = (P, 0).

• Let S be the cubic spline interpolant of (t1, θ1), . . . , (tnSect+1, θnSect+1).

Write a function S = OrbitSpline(P,A,T,nSect) that computes S as defined by this process. Use the Mat-
lab spline function. You do not have to exploit symmetry when computing the αk. But vectorize!

Also write a function [x,y] = OrbitVals(S,P,A,t)where S is the cubic spline as produced by orbitSpline
and t is a column vecctor made up of nonnegative values. It returns planet location at the times specified
by the column vector t. In particular, x and y should be column vectors with the property that the planet is
located at (x(k),y(k)) at time t(k). Note that S interpolates across [0, T ] so you’ll have to use periodicity in
order to locate the planet for t-values that are greater than T . E.g., S(.23T ) specifies the polar angle for the
planet at time 3.23T . You might want to make use of the rem function to handle the periodicity computations.

Test your implementations on the script P3A available on the website. It will display the orbit defined by
P = 10, A = 20 and subdivide the area enclosed into 12 sectors of equal area. It will also run a simulation
using comet. Submit a copy of the final figure that is produced and a listing of OrbitSpline and OrbitVals.

Part B (5 pts) A Computation that Supports the Second Law and Rejects Another

Despite the Earth’s 23.5 degree axis tilt, the Northern and Southern hemispheres must receive equal amounts
of solar energy over the course of a year. However, in light of Kepler’s Second Law this is not obvious. Perihelion
is in January, so when the Earth is closest to the Sun the Southern Hemisphere is enjoying its summer. The
Southern hemisphere is presenting an “extra big face” to the Sun precisely when we are closer-than average to
the Sun. In contrast, the Earth is furthest way from the Sun during its summer period. This suggests that the
Southern hemispere might be capturing more than 50 percent of the total energy. On the other hand, Kepler’s
Second Law says that the Earth moves more quickly when it is closer to the Sun. This would tend to even out
the energy balance.

But perhaps Kepler’s Second Law is wrong. Maybe the Earth’s radius vector rotates at a constant rate.
Let’s check out these alternative “theories” with a careful energy balance computation.

The figure below shows what the Earth looks like from the Sun at various times during the year. For any
of these “snapshots”, the fraction of solar energy received by the Northern Hemisphere equals the ratio of the
area above the equator line to the total area of the disk. (Don’t worry about the fact that the Earth is a
spherical “target”. Think about the fraction of photons that hit the earth above the equator.) This fraction is
less than one-half during fall and winter and greater than one-half during spring and summer.

2



Mar 22 Apr 22 May 22

Jun 22 Jul 22 Aug 22

Sep 22 Oct 22 Nov 22

Dec 22 Jan 22 Feb 22

For the Earth, A = 94.51, P = 91.41, and T = 365.25. Assume that if r(θ) is the length of the radius vector
when the polar angle is θ, then E(θ) = k/r(θ)2 is the amount of solar energy that the Earth intercepts. This is
just the usual inverse-square law. (Don’t worry about the value of the constant k. You will find that it drops
out of the computations below.) A recipe for r(θ) is given above. The amount of that energy received by the
Northern Hemispere is given by

ENorth(θ) = E(θ)
(

1 + sin(θ − θv) sin(23.5π/180)
2

)
.

Here, θv = 54.7π/180 is the value of θ associated with the Vernal equinox (March 23 or so). The fraction in
parenthesis can be derived by considering the “above equator” areas that you see in the figure.

Write a script P3B that uses the Matlab integrator Quad to estimate the following ratios:

R1 =

∫ T

0

ENorth(S(t))dt

∫ T

0

E(S(t))dt

and

R2 =

∫ T

0

ENorth(2πt/T )dt

∫ T

0

E(2πt/T )dt

Here, S is the spline produced OrbitSpline(91.41,94.51,365.25,800). Thus, R1 estimates the fraction of
solar energy that is striking the Northern hemisphere during the course of a year assuming that the earth
moves according to Kepler’s Second Law. In contrast, R2 estimates the same fraction under the assumption
that polar angle rotates at a constant rate.

All integrals should be computed using QUAD. Your script should clearly report through ten decimal places
the values of R1 and R2 that are obtained when the QUAD relative error tolernce is set to 10−3, 10−4, 10−5,
10−6, 10−7, and 10−8. You will have to set up four calls to QUAD for each value of the tolerance. Submit output,
a listing of P3B, and a listing of all the “integrand functions” that you needed to solve this problem. You will
have to review how QUAD can integrate functions that have parameters.

3



Part C (7 pts) The Poisson Equation on a Square

Consider a square metalic plate with vertices at (0,0), (1,0), (1,1), and (0,1). Let T (x, y) be the temperature
at point (x, y) where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Assume that T = 0 along the left, right, and bottom edges but
that T (x, 1) = 100 sin(πx)e−2x for 0 ≤ x ≤ 1. We wish to estimate the value of T (x, y) for points (x, y) that
satisfy 0 < x < 1, 0 < y < 1. In particular, for a given positive integer m we wish to estimate the temperature
at (ih, jh) for all 1 ≤ i ≤ m and 1 ≤ j ≤ m where h = 1/(m + 1) The following figure depicts the situation
when m = 7:

The points of known temperature are designated by ’o’ and the points of unknown temperature by ’+’. Thus,
there are m2 unknowns t1, . . . , tm2 . We associate these unknowns with the ’+’ points in top-to-bottom, left-
to-right order.

A reasonable model (whose details we suppress) is to assume that the temperature at a ’+’ point is the
average of the temperatures at its four neighbors points. (The “north”, “east”, “south” and “west” neighbors.)
Usually the four neighbors are ’+’ points. However, for a ’+’ point near the edge, one or two of the neighbors
may be an ’o’ point.

Let’s look at the “averaging” equation at the 10th ’+’ point. This is the 3rd ’+’ point in the 2nd row
(counting rows from the top). First, we figure out who the neighbors are:

• The north neighbor is the 3rd ’+’ point in the 1st row. (index = 3 = 10-7)

• The west neighbor is the 2nd ’+’ point in the 2nd row. (index = 9 = 10-1)

• The east neighbor is the 4th ’+’ point in the 2nd row. (index = 11 = 10+1)

• The south neighbor is the 3rd ’+’ point in the 3rd row. (index = 17 = 10+7)

Having done that, to say that the temperature at the 10th ’+’ point is the average of the four neighbor
temperatures is to say that

−t3 − t9 + 4t10 − t11 − t17 = 0.

This is a linear equation in five unknowns. Equations associated with ’+’ points that are next to an edge are
similar except that known edge temperatures are involved. For example, the equation at the 5th ‘+’ point in
the first row is given by

−t4 + 4t5 − t6 − t12 = north5,

where north5 is the (known) temperature at the ’o’ point located at (5h, 1). This is a linear equation that
involves four of the unknowns.

Thus, the vector of unknowns t solves an m2-by-m2 linear system of the form At = b. Note that for
i = 1:m2, A(i, i) = 4 and A(i, :) has either two, three, or four -1’s. Write a Matlab function t = Poisson(m)
that returns the solution to this system. Use the \ operator. Test your implementation by running the script
P3C available on the website.

4


