
CS 322: Assignment P1

Due: Wednesday, February 9, 2002 (In Lecture)

You may work with at most one other person. Follow the course rules for the submission of assignments. Do not submit

work unless you have adhered to the principles of academic integrity as descibed on the course website. Points will be

deducted for poorly commented code, redundant computation that seriously effects efficiency, and failure to use features

of Matlab that are part of the course syllabus. In particular, use vector operations whenever possible.

Representing an Ellipse

The general recipe for a conic section is given by

E =
{

(x, y) : Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
}

. (1)

Depending upon the values of the coefficients, E could define a single point, a pair of lines, a circle, an ellipse,
an hyperbola, a parabola, or just the empty set. It describes a nondegenerate ellipse if A > 0, C > 0,
B2 − 4AC < 0, and some additional conditions on D, E, and F hold. The goal in Parts A, B, and C is to plot
E if it is nonempty and specifies a nondegenerate ellipse.

Equation (1) is not a particularly handy representation for an ellipse when it comes to plotting because it
does not explicitly define y in terms of x or vice versa. It turns out that life is made difficult by the xy term,
whose presence means that the ellipse is “tilted”. For example, here is what 2x2 + xy + 3y2 − x + y − 2 = 0
and its axes look like:

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

However, we can rotate this ellipse counterclockwise about the origin so that its axes are parallel to the
coordinate axes:

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

An ellipse like this has a specification of the following form

E ′ =
{

(x, y) : A′x2 + C′y2 + D′x + E′y + F ′ = 0
}

With a little algebraic manipulation we can specify E ′ in terms of the ellipse center (h, k) and semiaxes a and
b:

E ′ =

{
(x, y) :

(
x − h

a

)2

+
(

y − k

b

)2

= 1

}
.

The parametric representation

E ′ = { (x, y) : x = h + a cos(θ), y = k + b sin(θ)), 0 ≤ θ ≤ 2π} .

is particularly convenient for plotting in Matlab:

theta = linspace(0,2*pi); x = h + a*cos(theta); y = k + b*sin(theta);
plot(x,y)
axis equal

Of course, we want to plot E , not E ′. But once we know (h, k), a, b, and the rotation angle φ that was used to
obtain E ′ from E , we simply rotate the display points defined by x and y by −φ in order to get display points
on E . In Parts A, B, and C you will write functions that implement these ideas.

Part A (5 pts) Rotating a Conic

Suppose φ is a radian measure and c = cos(φ) and s = sin(φ). If in the equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

we replace x with xc + ys and y by −sx + cy and simplify, then we obtain an equation of the form

A′x2 + B′xy + C′y2 + D′x + E′y + F ′ = 0.

Geometrically, the new conic section is obtained by rotating the original conic section φ radians counter-
clockwise about the origin. Work out recipes for the new coefficients (e.g., D′ = Dc − Es) and implement the
following function

function New_Kappa = RotateConic(Kappa,phi)
% Kappa is a structure array with fields A,B,C,D,E, and F that
% represents the conic A*x^2 + B*xy + C*y^2 + D*x + E*x + F = 0.
% New_Kappa is a structure array of the same form that represents a
% new conic obtained from the original by counterclockwise rotation about the
% origin by an angle whose measure is phi radians.

When “building” conics in this assignment, make use of the function

function Z = MakeConic(A,B,C,D,E,F)
% Represents the conic defined by Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
Z = struct(’A’,A,’B’,B,’C’,C,’D’,D,’E’,E,’F’,F);

This is available on the course website. Test your implementation of RotateConic by running the script P1A
which is also available on the website. It will produce two figures. Drag the legends so that they do not hide
the graphs. Print the two figures and submit them both together with a listing of RotateConic.

Part B (5 pts) The Center-Axis-Tilt Representation

Equate to zero the expression for B′ that you derived in Part A. By manipulating this equation obtain a
simple recipe involving A, B, and C for

tan(2φ) =
sin(2φ)
cos(2φ)

=
2 cos(φ) sin(φ)

cos(φ)2 − sin(φ)2
.

2

The built-in inverse tangent function atan can be used to solve for φ. This gives a formula for the rotation
parameter φ. You should notice from P1A output that there are four different values of φ in the interval [0, 2π)
that work. We’re not fussy about which one is utilized by your algorithm .

Using RotateConic we can obtain a representation A′x2 + C′y2 + D′x + E′y + F ′ = 0 for the untilted
ellipse. Note that if A′ > 0 and C′ > 0 then

A′x2 + C′y2 + D′x + E′y + F ′ = A′
(

x2 +
D′

A′ +
(

D′

2A′

)2
)

+ C

(
y2 +

E′

C′ +
(

E′

2C′

)2
)

− F̃ = 0 (2)

where

F̃ = −F ′ +
D′2

4A′ +
E′2

4C′ .

Assuming that F̃ > 0, manipulate (2) so that it has the form

(
x − h

a

)2

+
(

y − k

b

)2

= 1

thereby specifying the center (h, k) and axes a and b of the untilted ellipse. These four parameters together
with φ make up the center-axis-tilt representation for the given ellipse that is specified by E . Using these ideas,
implement the following function:

function Eta = MakeEllipse(Kappa)
% If the points (x,y) that satisfy
%
% Kappa.A*x^2 + Kappa.B*xy + Kappa.C*y^2 + Kappa.D*x + Kappa.E*y + Kappa.F = 0
%
% define a nondegenerate ellipse, then that ellipse is obtained by rotating
% the ellipse ((x - Eta.h)/Eta.a)^2 + ((y - Eta.k)/Eta.b)^2 = 1
% clockwise about the origin by an angle that has measure Eta.phi radians.
% If Kappa does not define a nondegenerate ellipse, then Eta is the empty matrix.

Note that the empty matrix should be returned if A′ ≤ 0, B′ ≤ 0, or F̃ ≤ 0 where F̃ is defined above. Test your
implementation by running the script P1B on the website. It prints h, k, a, b, and φ for every nondegenerate
ellipse with A ∈ {0, 1}, B ∈ {0, 1, 2}, C ∈ {0, 1, 2}, D ∈ {−1, 0, 1}, E ∈ {−1, 0, 1}, and F ∈ {−1, 0, 1}. For
your information, there are fewer than 30 nondegenerate ellipses with this form. Submit a copy of the output
and a listing of MakeEllipse.

Part C (5 pts) Plotting the Tilted Ellipse

If u′ = cos(φ)u + sin(φ)v and v′ = − sin(φ)u + cos(φ)v, then (u′, v′) is obtained by rotating the point (u, v)
clockwise about the origin φ radians. Thus, if we have points on the untilted ellipse ((x−h)/a)2+((y−k)/b)2 = 1
then we can obtain points on the tilted ellipse by using these rotation formulae. Implement the following
function:

function ShowEllipse(Eta)
% Let Eta represent the ellipse that is obtained by rotating the set of points
% that satisfy
%
% ((x - Eta.h)/Eta.a)^2 + ((y - Eta.k)/Eta.b)^2 = 1
%
% clockwise about the origin by an angle that has measure Eta.phi radians.
% This function plots the ellipse together with its two axes.

Be sure to set axis equal. Test your implementation of ShowEllipse by running the script P1C which is
available on the website. Submit output and a listing of ShowEllipse.

3

Part D (5 pts) The Perimeter of an Ellipse

Given positive real numbers a and b, define the ellipse E = { (a cos(θ), b sin(θ)) : 0 ≤ θ ≤ 2π} This problem
is about finding the perimeter of E . Unlike for the circle where C = 2πr there is no closed formula and we have
to resort to approximation. Our plan is to approximate the ellipse with a pair of polygons, one that is inscribed
and one that is circumscribed. Their computable perimeters will then give us lower and upper bounds for E ’s
perimeter. Here is a picture when these polygons have n = 8 sides:

To formally specify the vertices of these polygons assume that n is an integer that satisfies n ≥ 3. For i = 1:n+1
define the angle θi = 2π(i − 1)/n. Let Pi be the point

Pi = (a cos(θi), b sin(θi))

for i = 1:n + 1. Connecting these points in order renders the inner polygon and we denote its perimeter by
Cinner(n). Let Li be the tangent to E at Pi. These tangent lines define intersection points (x1, y1), . . . , (xn, yn)
where

xi = a
sin(θi) − sin(θi+1)

sin(θi) cos(θi+1) − cos(θi) sin(θi+1)
and yi = b

cos(θi+1) − cos(θi)
sin(θi) cos(θi+1) − cos(θi) sin(θi+1)

Connecting these points (the asterisks in the figure) in order renders the outer polygon and we denote its
perimeter by Couter(n). Thus, if C is the exact perimeter, then Cinner(n) < C < Couter(n) and so

|C − Couter(n)| ≤ Couter(n) − Cinner(n) ≡ ε(n)

Using these ideas implement a function [C inner,C outer] = Eperimeter(a,b,n) that returns the value of
the Cinner(n) and Couter(n). Your implementation should be fully vectorized–no loops!

Write a script P1D that uses Eperimeter and produces a semilogy plot of ε(n)/Cinner(10000) for the case
a = 3 and b = 2. This quotient is a pretty good measure of the relative error associated with Couter . Base the
plot on the values n = 10:10:1000. Display the value of Cinner(10000) to six decimal places in the title and
appropriately label the x and y axes. Submit listings of P1D and Eperimeter and a copy of the output.

4

