CS 322: Practice Final Exam Solution

1. Assume that $\mathrm{P}, \mathrm{A}, \mathrm{q}$, and T are given column n-vectors that represent "location data" for n separate comets. In particular,

$$
\begin{aligned}
& x_{i}(t)=\frac{P_{i}-A_{i}}{2}+\frac{P_{i}+A_{i}}{2} \cos \left(\frac{2 \pi}{T_{i}} t+q_{i}\right) \\
& y_{i}(t)=\sqrt{P_{i} A_{i}} \sin \left(\frac{2 \pi}{T_{i}} t+q_{i}\right)
\end{aligned}
$$

specifies the location of the i-th comet at time t. You may assume that $0<P_{i} \leq A_{i}$ and $T_{i}>0$ for $i=1: n$. Write a Matlab script that plots in a single window each of these elliptical orbits. Do not worry about color, axis scaling, labelling, etc. Each plot must be based upon 200 points to ensure a smooth rendition of the orbit. Your script should be vectorized and flop efficient.

15 points
The period T and phase delay q have NOTHING to do with the shape of the orbit. That depends only on the P and A values:

```
tau = linspace(0,2*pi,200);
c = cos(tau);
s = sin(tau);
hold on
for i=1:length(T)
    x = (P(i)-A(i))/2 + ((P(i)+A(i))/2)*c;
    y = sqrt(P(i)*A(i))*s;
    plot (x,y)
end
hold off
```

-10 have plot outside the loop so only one orbit
-3 for linspace($0, \mathrm{~T}(\mathrm{i}), 200$) inside the loop
-5 for linspace $(0,2$ pi, 200) outside the loop
-2 for linspace($0, \max (\mathrm{~T}) / 2$ pi,200 outside the loop
-2 for another plotting loop
-5 for trying to use P and A without loops
2. Assume that you are given an n-by- n nonsingular matrix A and an n-by- 4 matrix B. Write a Matlab script that determines a column 4 -vector d so that if

$$
p(t)=d_{1}+d_{2} t+d_{3} t^{2}+d_{4} t^{3}
$$

then $p(i)=c_{i i}$ for $i=1: 4$ where $C=B^{T} A^{-1} B$. Make effective use of the \backslash operator.

```
X = A\B;
rhs = zeros(4,1);
for i=1:4
    rhs(i) = B(:,i)'*X(:,i);
end
V = [1 1 1 1 ; 1 2 4 8 ; 1 3 9 27; 1 4 16 64];
d = V\rhs;
```

12 points for getting the rhs (the diagonal of C) and 8 points for solving $\mathrm{Vd}=$ rhs.
-5 if you compute all of C
-7 if you use inv because $\operatorname{inv}(\mathrm{A}) *$ z is about 2-3 times as expensive as $\mathrm{A} \backslash \mathrm{z}$. And you were asked to use backslash.

OK to use LU. Can also get X vis $X(:, j)=A \backslash B(:, j), \quad j=1: n$.
3. Assume that a, b, and T are given and that F is an implementation of a function $F(x)$ that has period T . The command

$$
\text { numI } \left.=\text { quad(}{ }^{\prime} F \prime, a, b, .000001\right)
$$

assigns to numI an estimate of

$$
I=\int_{a}^{b} F(x) d x
$$

that (usually) has absolute error less than .000001 . Write a MatlaB script that does the same thing more efficiently assuming that $b=a+(10 / 3) T$. You may assume that F-evaluations are very expensive and that F is uniformly behaved from a to $a+T$. Make sure your solution has an absolute error less than .000001 .

15 points:

```
tol = .000001/7;
I1 = quad(' ' ',a,a+T/3,tol);
I2 = quad(' F',a+T/3,a+T,tol);
I = 4*I1 + 3*I2;
```

12 points for this:

```
tol = .000001/4;
I1 = quad('F',a,a+T,tol);
I2 = quad(' F',a+T/3,a+T,tol);
I = 3*I1 + 1*I2;
```

For either of these, 5 points was for the correct tol adjustment.
4. Assume that z and f are given column 6 -vectors with

$$
1<z_{1}<z_{2}<2<z_{3}<z_{4}<3<z_{5}<z_{6}<4
$$

We wish to determine a column 4 -vector y so that if the continuous piecewise linear function L is defined by

$$
L(t)=y_{i}+(t-i)\left(y_{i+1}-y_{i}\right) \quad i \leq t \leq i+1
$$

then

$$
\phi\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\sum_{i=1}^{4}\left(L\left(z_{i}\right)-f_{i}\right)^{2}
$$

is minimized. Write a Matlab script that determines y by solving a least squares problem of the form min $\|A y-f\|_{2}$ where A is an 6 -by-4 matrix. Make effective use of the \backslash operator. Do NOT use fmins. Do not worry about vectorization.

15 points
Since

$$
L(t)=(i+1-t) y_{i}+(t-i) y_{i+1} \quad i \leq t \leq i+1
$$

we see that

```
A = zeros(6,4);
A(1,1) = 2-z(1); A(1,2) = z(1)-1; % Set t = z(1), i = 1 in the above
A(2,1) = 2-z(2); A(2,2) = z(2)-1; % Set t = z(2), i = 1 in the above
A(3,2) = 3-z(3); A(3,3) = z(3)-2; % Set t = z(3), i = 2 in the above
A(4,2) = 3-z(4); A(4,3) = z(4)-2; % Set t = z(4), i = 2 in the above
A(5,3) = 4-z(5); A(5,4) = z(5)-3; % Set t = z(5), i = 3 in the above
A(6,3) = 4-z(6); A(6,4) = z(6)-3; % Set t = z(6), i = 3 in the above
y = A\f;
```

Roughly 2 points per row.
5. The backwards Euler method for the initial value problem $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$ is defined by

$$
y_{n+1}=y_{n}+h_{n} f\left(t_{n+1}, y_{n+1}\right)
$$

where $t_{n+1}=t_{n}+h_{n}$. Write a Matlab script that makes effective use of this method to produce a plot of $y(t)^{T} y(t)$ across the interval $[0,10]$ where

$$
y^{\prime}(t)=A y(t)+U(t) \quad y(0)=y_{0}
$$

Assume that A is a given, m-by- m matrix and that $\mathrm{U}(\mathrm{t})$ is an implementation of the function U that returns a column m-vector for any given scalar t. Assume that the initial vector y0 is available. The plot should be based on estimates of $y(t)$ at $t=$ linspace $(0,10,201)$. Make effective use of $[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\operatorname{lu}(\mathrm{C})$ that returns the factorization $P C=L U$. Do not use ode23 or any other Matlab initial value problem solver.

20 points
The step: $\left(I-h_{n} A\right) y_{n+1}=y_{n}+h_{n} U\left(t_{n+1}\right)$

```
h = 10/200;
t = linspace (0,10,201)
[m,m] = size(A);
C = eye(m,m) - h*A;
[L,U,P] = lu(C)
z = zeros(201,1);
z(1) = y0'*y0;
for n=1:200
    ynext = U\L\P*(y0 + h*U(t(n+1)));
    z(n+1) = ynext'*ynext;
    y0 = ynext;
end
plot(t,z);
```

Getting the matrix is 5 points.
Factoring it outside the loop is 4 points.
$z(1)$ is 3 points
ynext is 5 points
Plotting and z is 3 points.
6. Assume that cubic splines S_{x}, S_{y}, and S_{z} interpolate the data (x_{i}, y_{i}, z_{i}), $i=1: n$ in the sense that

$$
\left(S_{x}\left(t_{i}\right), S_{y}\left(t_{i}\right), S_{z}\left(t_{i}\right)\right)=\left(x_{i}, y_{i}, z_{i}\right) \quad i=1: n
$$

Assume that $0=t_{1}<t_{2}<\cdots<t_{n}=1$. Let

$$
d(t)=\left|S_{x}(t)\right|+\left|S_{y}(t)\right|+\left|S_{z}(t)\right| .
$$

(a) Write a Matlab script that computes a scalar t_{*} so that $d\left(t_{*}\right)=(d(0)+d(1)) / 2$. You must make use of the method of bisection. (Write it from scratch, do not invoke any Chapter 8 function.) The absolute error of your computed t_{*} must be less than or equal to tol where tol is a given positive scalar. Assume that Sx, Sy, and Sz are given implementations of the three splines and that the data is represented in the arrays x, y and z. Recall that if S is a cubic spline and u is a scalar, then $\operatorname{ppVal}(S, u)$ is the value of the spline at u.
(b) What can go wrong if the value of tol is too small? Explain.

15 points

```
d0 = abs(x(1)) + abs(y(1)) + abs(z(1));
n = length(x);
d1 = abs(x(n)) + abs(y(n)) + abs(z(n));
ave = (d0+d1)/2;
L = 0; SL = d0-ave;
R = 0; SR = d1-ave;
while R-L>2*tol
    mid = (R+L)/2;
    Smid = abs(ppVal(Sx,mid)) + abs(ppval(Sy,mid)) + abs(ppval(Sz,mid));
    if Smid*SL<=0
        R=mid; SR = Smid;
    else
        L= mid; SL = Smid;
    end
end
tstar = (R+L)/2;
```

If tol is smaller than EPS the iteration may not terminate because there will eventually be no floating point numbers in between L and R.

Bisection on the wrong function -5 .
Mistakes because you assume d is monotone increasing up to -8 .
3 points for the tol-too-small answer
-4 if more than one function evaluation per iteration

