CS 322: Final. Grading Guide

P1-P5 (Max = 100)

97 b'e

96 XX

95 XXXX

94 XXXXXXXXXXXXX
93 XXXXXXXXXX
92 KXXXXXKXXXX

91 XXXXXXXXXX
90 KXXXXXXXX

89 XXXXXXXXXXXXX
88 KX XXXXXXXKKX
87 XXXXX

86 XXXXXXXX

84 XXXXXXX

83 XXXXXXX

82 KXXXXXKXXXX

81 XXXXXXXX

80 XXXXXXX

79 XXXX

78 XX

7 XXXXX

76 XXXXX

75 XXXX

74 XXX

73 XXX

72 XX

71 XXX

70 XXX

<70 XXXXXXXXXX

Final Exam (Max = 100)

85-90 xxxX

80-84 XXXXXXXXX

7579 XXXXXXXXXXXXXXXXX

T0-74 XXXXXXXXXXXXXXXXXXXXXXXXXXX
65-69 XXXXXXXXXXXXXXXXXXXXXXXXXXX
60-64 XXXXXXXXXXXXXXXXXXX.

55-59 XXXXXXXXXXXXXXXXXXXXXX
50-54 XXXXXXXXXXXXXXXXXXX.

45-49 XXXXXXXX

40-44 xXXXXXX

< 40 XXXXXKXX

Total Scores = .30%*(P14+P2+P3+P4+p5) + .20Prel + .20 Pre2 + .30*Final

85-100 XXXXXXX

82-84 XXXXXXXXX

79-81 XXX XXKXKXXXXXXXXXXK

76-78 XX XXXXXXXXXXXXXXX:
73-75 XXX XXKXKXXXXKXXXXXKXX

70-72 XX XXXXXXXXXXXXXXX:
67-69 XXX XXKXKXXXXKXXXXXKXXXXKKXX
64-66 XX XXXXXXXXXXXXX

61-63 XX XX XXX XXX XX XXX XXXXXXKX
58-60 XXXXXXXX

55-57 XXXXXXX

52-54 XXXXX

< 51 XXXXXXXX

Approximate Course Grade distribution (4, B, C) =~ (30%, 40%, %25)

1. (a) (10 points) Let P,, be the regular polygon with vertices (cos(2mwk/m),sin(2rk/m), k = 0:m — 1.
Complete the following script so that it displays P, /o and P, in the same window. Do not compute any more
sines or cosines. Your solution should be vectorized. Do not worry about axis scaling.

% Assume n is a positive even integer >= 6
thetal = linspace(0,2*pi,n+1); cl = cos(thetal); sl = sin(thetal);
theta2 = thetal + pi/n; c2 = cos(theta2); s2 = sin(theta2);

Solution

% Display P_(n/2). Every other P_n vertex is a P_(n/2) vertex.
plot(c1(1:2:n+1),s1(1:2:n+1)) % 4 points

% Every other P_(2n) vertex is a P_n vertex

zeros(1,2*%n+1); c(1:2:2*n+1) = ci; % 1 point
zeros(1,2*%n+1); s(1:2:2*n+1) si; % 1 point

% In between these we have the (c2(i),s2(i)), i=1:n

c(2:2:2%n) = c2(1:n); % 1 point
s(2:2:2*%n) = s2(1:n); % 1 point
hold on % 1 point
plot(c,s) % 1 point
hold off

Two points if you compute the sines and cosines from scratch.

(b) (10 points) Assume that A € R*™", u € R", and = € R" are stored in MATLAB arrays A (n-by-n), u
(n-by-1), and x (n-by-1). Write a script that assigns y = Auu? Az to y.

Solution:
w = A*u; alfa = w’*x; y = alfa*w; % 10 points. Note: one matrix-vector product.
w = A*¥u; v = A’*x; beta = u’#v; y = beta*w ¥ 5 points because you didn’t use the
% fact that (u’#*A’) = (A%u)’
y = (Axu)*(v’*(A’*x)) % Another 5-point solution because it
% involves two matrix-vector products
% like the previous solution.
y = Axwku’*A?*x % 2 points because this is 0(n"3),

% (A*u¥u’) is an n-by-n matrix

2. (a) (10 points) Write a script that assigns values to d such that the polynomial p(z) = d; + do(z — 1) +
ds(z — 1) + d4(z — 1)® has the property that p(3) =1, p'(3) = 2, p”(3) = 7, and p(4) = 10.

Solution

% d(1) + 2d(2) + 4d(3) + 8dM4) =1 2 points
) d(2) + 4d(3) + 12d(4) =2 2 points
) 2d(3) + 12d(4) =7 2 points
% d(1) + 3d(2) + 9d(3) + 27d(4) = 10 2 points
d=[1248;01412; 00 2 12; 1 3 9 27]1\[1;2;7;10] % 2 points

DODDDEEEOEEEEEOOOOOOOOOO55555OOOOO55555555555>

Miscellaneous Deductions:

1. Entries backwards in A - Minus 2 pts

2. Setting sA = sparse(A) and not using it - Minus 1 pt

3. Made b a row vector (i.e., forgot transpose) - Minus 1 pt

4. Rearranged the rows of A but not corresponding entries in b -
Minus 3 pts.

5. Set up A’ rather than A - Minus 2 pts.

6. Use A(i) instead of A(i,:) - Minus 2 pts.

7. Initialize d vector to d=[dl d2 d3 d4]’; - Minus 2 pts.

8. Db\A - Minus 2 pts.

9. Discussion of using Cholesky even if used LU later - Minus 2 pts.

(b) (10 points) Consider the following script:

n = 5;
thetal = linspace(0,2*pi,n); S1 = spline(thetal,sin(thetal)); yi1
theta2 = linspace(pi,3*pi,n); S2 = spline(theta2,sin(theta2)); y2

ppval(S1,4);
ppval(S2,4);

Ignoring roundoff, do you think y1 and y2 have the same value? Explain. Hint: Think about symmetry,
periodicity, and the fact that spline returns the not-a-knot interpolant.

Solution:

Since we have 4 subintervals, each spline is made up of just two cubics. (Not-a-knot tells us that.)

Let py (across [0,7]) and ps (across [w,27]) be the two cubics that define S;.

Let ¢1 (across [m,27]) and g2 (across [2m,37]) be the two cubics that define Ss.

The main conclusion from symmetry: Sz(37 — z) = S1(z).

It doesn’t follow that S1(4) = p2(4) equals g1(4) = S2(4).

Note:It doesn’t follow that ps is —p; translated right, or that ¢; is —go translated left, or that ¢o is p; translated
right.

Points were given as follows:

1. Observing that each spline involves just 2 cubics - 3 pts.

2. Saying "No" - 2 pts.

3. Seeing that it boils down to the question does p2=ql on [pi,2*pi] -
3 pts.

4. Seeing that S2 is S1 in reverse - 2 pts.

Thinking about pl and p2 "is one the flip of the other" - 2 pts.

6. Picture of sine function (or two of them) on interval(s) with
breakpoints drawn in - 2 pts.

(¢

7. Description of sine function being symmetric/reflection - 2 pts.

8. Description of sine function being "out-of-phase" or periodic - 2 pts.
9. Description of using S’’’ continuous at x2, x_{n-1} which will break
symmetry since 4 is closer to one of these points in one spline than in
the other - 2 pts.

MAXIMUM of 10 pts (no matter how many of these you wrote)!!!

3. (15 points) Implement the following function so that it performs as specified:

function x = FirstCol(A)

% A is m-by-n (m>=n) an gas rank n.

% x is the first column of G where G is n-by-n, lower triangular, and satisfies
% GxG? = A’*A

Your solution should be vectorized and efficient
Solution
% Compute the first column of C = A’*A
v = A*%A(:,1); % 5 points
% Comparing firs columns of C = GG’ we see C(:,1) = G(:,n)*G(1,1).
% It follows that G(1,1) = sqrt(C(1,1))
x(1) = sqrt(v(1)); % 5 points
% C(2:n,1) = G(2:n)*alfa so
x(2:n) = v(2:n)/alfa; % 5 points
-3 for no vectorization.
2forB = A’*A; ¢ = B(:,1)
Here is a 4-point solution since it is an order of magnitude more work:

G = chol(A’*A); x = G(:,1)

Working with LU in this way is worth 3 points.
Doing an n = 2 example correctly getting x from the first column of C is worth up to 8 points.

4. (15 points) How would you use fmin to find that point on the ellipse
x(t) = h + acos(t)
y(t) =k + bsin(t)

which is furthest away from a given point (zg,vp). Your answer should include an implementation of the
objective function that is passed to fmin, a justification of the search interval [L, R], and the script that sets
up L and R and calls fmin For your information

z = fmin(’£’,L,R,[1,pl,p2,..)

returns a minimizer of the function f(¢,pl,p2,...) on the interval [L, R]. Assume that x0, y0, h, k, a, and b are
available. In the calling script, assign the 2 and y coordinates of the solution to xstar and ystar. Efficiency
matters (as always). Do not worry about error tolerances. Do not worry if there is more than one point on
the ellipse that is maximally separated from (zg, yo)

Solution

% 5 points for efficient deterinination of L and R
if x0>=h & y0>=k; L = pi; R = 3*pi/2 ; end
if x0>=h & yO<k; L pi/2; R =pi ; end
if x0<h & yO>=k; L = 3*pi/2; R = 2*pi ; end
if x0<h & yO<k; L = 0; R = pi/2 ; end

% 3 points for fmin call
tstar = fmin(’MyF’,L,R,[],a,b,h,k,x0,y0);

% 2 points for this...
xstar = h + a*cos(tstar);
ystar = k + b*sin(tstar);

% 5 points for the objective function

function z = MyF(t,a,b,h,k,x0,y0)
xdiff = (h+a*cos(t) - x0);

ydiff = (k+b*sin(t) - y0);

z = -sqrt(xdiff~2 + ydiff~2);

Miscellaneous deductions:

Objective function that minimizes - Minus 2 pts.

L =0, R= 2%pi - Minus 3 pts.

Use of splines (inefficient) - Minus 3 pts.

Didn’t pass a,b,h,k - Minus 1 pt.

Didn’t pass a,b,h,k,x0,y0 - Minus 2 pts.

Didn’t compute x,y in objective function - Minus 2 pts.

. Objective function of 1/sqrt(dist) - Minus 2 pts. (won’t work if
(x0,y0) is on ellipse.)

8. Discrete version - Minus 5/10 pts. from objective function and script
(doesn’t pertain to 5 pts for choice of [L,R].)

9. Objective function of sqrt(dist)-maxdist_inside_ellipse - Minus 2 pts.
(would minimize, not maximize).

10. [L,R] - not angles at all - Minus 5 pts.

~N O O WN -

5. (10 points) Elementary calculus tells us that for small h

where £ < n < z + h. The script

flz+h) - fz)

h

= f(@)] =

disp(’ h Error’)
disp(P——————————mmm e)
for k = 1:12

h = 1/167k;

end

Dh = (exp(1+h)-exp(1))/h;

error =

disp(sprintf(°%20.15f

abs(Dh - exp(1));

%20.15f° ,h,error))

2

")

explores this result for the function e® at x = 1. Here is the output:

h Error
0.062500000000000 0.086744022944412
0.003906250000000 0.005316063900590
0.000244140625000 0.000331848518794
0.000015258789063 0.000020738972192
0.000000953674316 0.000001296274671
0.000000059604645 0.000000088814953
0.000000003725290 0.000000036660889
0.000000000232831 0.000000871125916
0.000000000014552 0.000010407869080
0.000000000000909 0.000020109709045
0.000000000000057 0.000468171540955
0.000000000000004 0.031718171540955

Explain why the error decreases and then grows as h gets smaller and smaller. You may assume that exp
returns the nearest floating point number to the true exponential.

Solution

5 points: Rounding Errors in numerator are maginified by 1/h.

3 points:
as EPS/h.

As h goes to zero calculus error goes to zero but rounding error grow

The sum h + EPS/h minimizes around h = sqrt(EPS). Or Mention "tradeoff"
between roundoff and calculus error.

2 points:

6.(a) (10 points) Give two reasons why automatic stepsize control is important in an initial value problem
solver like ode23.

Solution

Error control (5pts)

If they talked about accuracy, they also received 5 points.
If they talked around error, e.g. "prevents misbehviour", "a closer
answer", they received 3 points.

Reduce number of f-evals (5pts)

If they talked generally about increasing efficiency, reducing number of
iterations, smaller number of steps, run at higher speeds, etc, without
talking about function evaluations, they generally received 3 points.

Some answers comnined the two, e.g. "optimal flop count for given
tolerance" = 5/10 points; "allows the stepsize to be small where
appropriate but large where the result won’t be severly corrupted (for a
given number of f-evals, greater accuracy)" = 7/10 points.

No points were awarded for "stability", "overshooting", or for issues
related to steepest descent methods.

(b) (10 points) The backwards Euler method for the initial value problem y' = f(t,v), y(to) = yo is defined
by
Yn+1 = Yn + hnf(tn+17 yn+1)

where t,,41 = t,, + h,, and y,, = y(t,,). Complete the following function so that it performs as advertised:

function Yvals = BackEuler(A,c,y0,h,N)

% A is an m-by-m matrix

% ¢ and y0 are column m-vectors

% h >0 and N is a positive integer

% Yvals is an N-by-m matrix with the property that Yvals(m,:)’ is the
% backward’s Euler solution to

)

% Ax(dy/dt) = y + exp(-t)*c y(0) = y0

h

% at t = nh.

Make effective use of [L,U,P] = LU(-) when solving linear systems. Assume nonsingularity of all the linear
systems whose solution is required.

Solution
Note that y,11 = Yn + RA™ (Yps1 + e i+1¢) and so (I — hA™ Yy, 1 = y, + he "1 A=1c. Apply A to
both side and conclude:
(A — hD)ypi1 = Ay, + he 'ntic)

[m,m] = size(A);
Yvals = zeros(N,m);
[L,U,P] = LU(A-h*eye(m,m));
for n = 1:N
% Have solution at t = (n-1)h, get solution at t = nh.
b = Axy0 + exp(-n*h)x*c;
ynew = U\(L\P*b);
Yvals(k,:) = ynew’;
yO = ynew;
end

DOOOOS55>>

3 for using LU outside of loop

2 for correct matrix

2 for correct rhs when finding ynew
3 for correct use of L, U, P

-2 for screwups like not updating yO (if they were using yO in their
loop), or for having yvals(1,:) = yO.

If people got the correct answer, but explicitly found the inverse of A,
(i.e. they used (I - hA“{-1})y_{n+1} = y_n + he " {-t_{n+1}}A"{-1}c) they
received 8 out of 10 (-2 for not having the correct matrix).

Another common mistake was using y_{n+1} = y_n + h*x(A\(y_n +
exp(~h*(n+1))*c), i.e. y_n instead of y_{n+1} on the RHS. They would
generally call LU on the matrix A. This generally received 6 out of 10, as
they lost 2 points for the correct matrix for LU decomposition and two
points for the correct rhs when finding ynew. (They could get less than
this if they also e.g. put yO in yvals)

