CS 312
Spring 2003

Lecture 19:
Memory Management

The grand illusion

e Evaluation models say: infinite universe of
SML values

—primitives, tuples, datatype constructors
—arbitrary number of distinct ref cells

Reality: finite computer memory

—huge array of ~5 billion bits of information
—laid out sequentially on silicon

e How does SML (Java, ...) provide this
abstraction of the hardware?

The memory interface

20

address
> 16
processor |« — 12 Wwords
data (32+ bits) 8 (4 bytes)
4
0
structure Menory = memory
type nmenory = int array
type address = int

type data = int
exception Unal i gnedAccess
val read: address -> data = ...

val wite: address * data -> unit = ...

end

A simple model
e SML values stored in memory
e Variables take up one memory location
« Primitives (int, bool) stored in one word

Boxes

e Tuple of values stored sequentially in
memory

val x = (1, 2, false) 12764 | 000...0000
12760 |000...0010

[x= «f—{1|2[false| 12756 {000..0001)

X 3480 12756 o

 Variable bound to a tuple contains
address of tuple in memory (in SML)

Environment Memory (stack):
model: address contents
TOP :
y 46352384 000...00001 | =
x 46352380[000..00010| =
x=2
Refs

» Refis just a memory cell

val x =ref 13

87624 | 48572 o
"
48572 | 18 17

x:=17

Memory management

e How does system know where to put
things in memory? How to:
—find memory for a new variable?
—find memory for a new value?
—avoid putting two values in same place?
—avoid leaving memory unused?

—reuse memory if value stored there is not
needed?

A typical memory layout
e Three important regions of memory

stack— R_ecords thg bindings
in the environment
M (stores variables)
*

stores all boxed values

heap —

code ——_ machine code the

processor understands
8

Stack

 Stack grows downward in memory
« Stores variables for each function call

4\
i 9 g code
Stack pointer (spz ; = _. o
| et
fun g() = ... variables
fun f(.) = ...9() ... forgca" f code
in e fenv
90);
f() variables
end
Stack for g call
pointer 3
sp) stack heap

Heap

e Memory heap # Binary heap
* Memory management:
—where thingsgointheheap valx=(1,2,y) ...
— when to get rid of things in the heap
— possibly: moving things in the heap
— must be done at run time; can’t preallocate space
e Things in heap
take space: block_of block of
memory inuse free memory

— Tuples, records

_ Refs /%_W block
containing

— Closures | 7 |/ |s|13| |uhe"§| string
— Strings —

increasing/memory address
word containing address ~ ‘word containing int 1o

Allocator interface (explicit free)

signature ALLOCATOR = sig
(* malloc(n): allocate an unused bl ock of
* n bytes and return the address.
* Requires: n > 0 *)
val nmalloc: int -> address

(* free(a): release the previously

* allocated block at address a.

* Requires: a was previously returned

* by malloc and has not been freed

* already *)

val free: address -> unit
end Requires clause on f r ee makes C
programming difficult -- hard to share values

between different modules B

Allocator interface (with GC)

signature ALLOCATOR = sig
(* malloc(n): allocate an unused bl ock of
* n bytes and return the address.
* Requires: n > 0 *)
val nmalloc: int -> address

col | ect _garbage(roots): find bl ocks
of menory previously allocated by
mal l oc(), but that are not now
reachabl e fromroots. Mark these

bl ocks unused. *)

val collect_garbage: address |ist

end

* Ok Ok ok %

Fixed-size blocks

signature ALLOCATOR = sig
val size = 16
(* malloc(n): allocate an unused bl ock of
* n bytes and return the address.
* Requires: n = size *)
val nalloc: int -> address

free(a) rel eases the previously
al l ocated bl ock at address a.
Requires: a was previously returned
by mall oc and has not been freed
al ready *)

val free: address -> unit
end

(

* ok * k%

Much easier to implement...

Freelist

* ldea: keep all the unused blocks of
memory in a linked list
—Use first word of each block to store pointer
—On malloc, update freelist to tail, return head
—On free, do cons
freelist

VAR
1 [[WM I 1

=

Fixed-size allocator

structure Allocator :> ALLOCATOR =
(* freelist actually stored in nenory *)
val freelist: address ref ref 0
val nenory: Menory. nmenory

fun nalloc(n) = let

val ret = Ifreelist

val next = Menory.read(nenory, !freelist)
in

freelist := next;

ret
end

fun free(a) =
(Menmory.write(menory, a, !freelist);
freelist := a)
end

Variable-sized blocks

Problem: different values take different amounts
of memory

Idea: use freelist just like before, but with
variable-sized blocks of memory

T

[l [l [

Problems:
— Head of freelist may not be big enough (search!)
— Head of freelist may be too big

Eirst-fit
e On allocation, walk down freelist until first
large-enough block is found
e Splitinto allocated part, unused part, put
unused part back on freelist
e Problems:
— Can be slow: may need to see entire list

— Fragmentation of heap into small unusable blocks
(external fragmentation)

U [QL] 1]

Buddy system

Idea 1: accelerate allocation by having multiple freelists, for
different sizes

Idea 2: free block can be split into two free “buddies” that know
about each other

exponential buddy Fibonacci buddy
1 = 1 =
2 = .. 2 = ..
4 G . 3 >
8 [... 5 = ...

« malloc: find smallest non-empty freelist larger than requested block
size.

* Advantage: merge adjacent free blocks (“buddies”) to make free
block for next-larger freelist

* O(1) malloc, free! (need doubly-linked freelist)

« Disadvantage: internal fragmentation (~27% space wasted)

Simple allocator

e Afast allocator that doesn’t support f r ee:
structure Allocator :> ALLOCATOR = struct

(* freelist actually stored in nenory *)

val curr: address ref = ref LONMEM

val nenory: Memory.nemory = ..

fun malloc(n) = let
val ret = lcurr
in
curr :=ret + n;
if curr > H_MEM then rai se Qut Of Menory
el se ret
end

end

« Idea: reclaim memory using an automatic
garbage collector

