CS312

More Validation

Lecture 11
24 Feb ’03

Modular structure

Program is composed of modules

One module depends on another if it uses a
value, function, or type from it

Module Dependency Diagram (MDD) helps

understand large-scale program structure

Module 1

\Y; [oYo [B] (% Module 3

depends on>

Keeping dependencies simple

Too many dependencies or cycles: harder to
debug, maintain, extend software

B E

A

Bottom-up development

Bottom-up: develop
modules before the
modules that depend on
them

Advantage: catch key
technology/performance
Issues early

Advantage: always
working code, easy testing

Disadvantage: catch large-
scale design flaws late

Top-down development

Top-down: develop using
modules before modules
they depend on

Advantage: get high-level
design right from start,
Advantage: easler to design
Interfaces well, quickly spec
out system

Disadvantage: harder to test
until program complete

Unit testing

Test modules through their interfaces
Test each Implementation against interface separately
Write test harness to test each module
Ideal for bottom-up development

THg

-4 0 [¢+-1{O

M (&=

Integration testing

Test program from top level — validation of high-level
structure, user interface of program

Ideal for top-down development

Replace missing module
Implementations with
module stubs that
simulate functionality
to some extent

Top-down or bottom-up?

Depends on the project!

— Minimize risk: resolve uncertainties early
— Ul/high-level design: top-down

— Core technology/performance: bottom-up
Usually some mix of both strategies

& both unit and integration testing

Verification

Code verification gives extra confidence when
testing is not enough

— Maybe not possible to test adequately

— Or code needs high assurance

Goal: prove program works

— Strategy: prove that each implementation satisfies
Its specification
— Consider each module separately

e Assume other modules satisfy their specifications

e Works if no cycles in module dependency; otherwise may have
to consider multiple modules at once

Imax example

Does the following impl satisfy its spec?

(* Imax(lst) 1s the | argest el enent
*1nlst. Requires: Ist Is non-nil.
*)

fun max(lst: I1nt list):int =

case | st of

'] => raise Fail “7?”

| [x] =>x

| h::t => Int.max(h, | max(t))

Problem: Recursion leads to circular reasoning!

Proof by induction

Goal: prove some proposition is true for an infinite collection
— E.g., Imax(| st) isthe max element for all non-empty lists | st
State the proposition as a condition P(n) that must be true for
alln>n, (usuallyn,isO or 1)
— nisthe length of the list | st (n=1)
— P(n) is: | max(| st) isthe maxelem for all lists | st of length n

Base case: show P(n,)
— E.g., I max(| st) is the max elem for all 1-elem lists | st

State induction hypothesis P(n)
— Assume | max(| st) isthe max elem for all lists | st of length n

Induction step: show P(n+1) assuming induction hypothesis
— Show: | max (1 st) isthe max elem for all (n+1)-elem lists | st

State conclusion: P(n) is true for all n = n,

Pl =>P2)=PQB3)=..=>P)=..
“falling dominoes”

(* lmax(lst) is the largest elenent in |st.
* Requires: |Ist is non-nil. *)
fun Imax(lst: int Ist):int =
case | st of
[] => raise Fail *?”
| [x] => X
| h::t =>Int.max(h, | max(t))

State the proposition: foralln>1, | max(| st) isthe max elem
for all lists | st of length n

Base case: i1s| max(| st) give max elem for all 1-elem lists | st ?

| max([v]) > case [v] of ... 2> v
Induction hypothesis: | max(| st) works for all | st of length n
Induction step: consider | max(| st) wherel st has length n+1
St = [VyVy,. Vo]

L max([vy, V,,.. Vo]) 2 case ([VyV,,..v] of
=2 Int. max(vy, |[max([Vv,..Viql))

IH: | max([V,,...v,,,])) evaluates to maximum of v,,...,v

1Vn+l

Ifv, 21 max([V,,...Vyq), Vi Ismaxof vy,...,v

1V n+l

Conclusion: | max finds the max elem for all non-nil lists

Data abstraction

structure Natset = struct

type set = int |ist
(* AF: [x1,..,xn] represents {x1,..,xn} *)
(* Rl: no duplicates or negative elens *)

fun union(sl: set, s2: set)=
foldl (fn(x,s) =>1if contains(s,x) then s else x::5s)

sl s2?

Nat set . uni on correct If:

Assuming RI(s1) & RI(s2), we can show:

RI(uni on(s1, s2)) &
AF(uni on(sl, s2))=AF(sl) O AF(s2)

0 AF(s1) O AF(s2)

AF AF

s1,s2 uni on

Proof of correctness

Given: s, and s, contain no negative elements or duplicates
Show: RI(uni on(s,, s,)) & AF(uni on(s,, S,)) =AF(s,) U AF(s,)

uni on(s,, s, =2
foldl (fn(x,s)=>if contains(s,x) then s else x::s) s, s,

Now we need to use induction!

State proposition in terms of P(n): for all n = O, iIf RI(s,) & RI(S,)
ands, haslengthn,foldl (..) s; s,evaluatestoalist|l such that
RI(I') istrue & AF(l)=AF(s,) UAF(s,)
Basecase:foldl (..) s, [] evaluatesto | =s,
RI(s;) soRI(I'), AF(s,) OAF([])=AF(s,) [l =AF(s,) =AF()
Induction hypothesis: assume P(n)
Induction step: assume RI(s;) & RI(s,) and s,=[v, .., V4]

Recall: foldl f b (h::t) = foldl f (f(h, b)) t

foldl (.) s; [Vy .o Viydl

> foldl () ((-)(Vy81)) [Var s Vo]

Completing proof

fun union(sl: set, s2: set)=
foldl (fn(x,s) =>if contains(s,x) then s else x::s) sl s2
Given: s, and s, contain no negative elements or duplicates
Show: RI(uni on(s,, s,)) & AF(uni on(s,, S,)) = AF(s,) U AF(s,)

Induction hypothesis P(n): if RI(s;) & RI(s,) and s, has length n,
foldl (.) s; s,evaluatestoalist| such that
RI(l) istrue & AF(l)=AF(s;) UAF(s,)

Induction step, show P(n+1): assume RI(s,) & RI(s,) and s,=[V,, .., V.,

foldl (.) s; [V, .oVl

> foldl (L) (()(Vi S9)) [Va o Vol

- foldl (.) (if contains(s,,Vv,) then s, else v;::s,))
[Vo, oor Vil

Have RI(s,) , so we can assume cont ai ns works

| f contains(s,,v,) then s, else v;::s, > s, where

RI(s,”) and AF(s;") = AF(s,) O {v}

Now, can use induction hypothesisonfol dl (..) s;' [V, ...V] —

it evaluates to a list | such that

RI(I) & AF(I)=AF(s,")UAF(V,, .., Vol)=AF(s) O{v3IO{V,, ... V i}
= AF(s,) O AF(s,)

This | is the result of uni on(s1, s2) —we’re done! =

Some thoughts

We can really prove code works!

Convincing proof requires knowing
evaluation rules for language

Almost any interesting code requires proof by
Induction

Using recursive functions, loops correctly
requires inductive reasoning — you have
already (partly) internalized this process

Reasoning explicitly avoids errors

