
CS312 Fall 2001

Prelim 1

October 18, 2001

Name

Instructions

Write your name on the line above. There are seven questions on 10 num-

bered pages. Check now that you have all the pages. Write your answers in

the boxes provided. Ambiguous answers will be considered incorrect. The

exam is closed book except for the handouts provided. Do not begin until

instructed. You have 90 minutes. Good luck!

1 2 3 4 5 6 7 �
a

/14 /12 /7 /8 /7 /10 /9 /67

1

1. (14 points) Evaluate each of the following ML expressions and say what

value will be produced. Note: One of the expressions is erroneous. For

the erroneous expression, say approximately what error message will be

produced.

(a) let

val x = 4

val x = x + 1

val x = 1 - x

in

x * x

end

16

(b) (fn x => fn y => y - x) 2 3

1

(c) let

val s:string = "xyzzy"

val c:char = #"c"

val x:int * int = String.size s * Char.ord c

in

~x

end

Type mismatch in declaration of x

(d) let

fun shuffle (x:int list) (y:int list) : int list =

case x of

nil => y

| u::z => u::(shuffle y z)

in

shuffle [1,2,3] [4,5]

end

[1,4,2,5,3]

2

(e) let

val x = 3

val y = 4

val y =

let val x = 5

in x + y

end

in

x + y

end

12

(f) foldl (op ^) "2" (map Int.toString [1,3])

"312"

(g) let

val imp = String.implode

val chr = List.map Char.chr

val inc = List.map (fn x => x + 1)

val ord = List.map Char.ord

val exp = String.explode

in

(imp o chr o inc o ord o exp) "Mississippi"

end

"Njttjttjqqj"

3

2. (12 points) Fill in the box with a value that causes the entire expression

to evaluate to 42. If impossible, say so and explain why. Example:

let

val zardoz = (42,43)

in

#1 zardoz

end

(a) let

val zardoz = fzed=42g
in

#zed zardoz

end

(b) let

fun zardoz (x:int list) (y:string list) : int =

case (x,y) of

(nil,) => 38

| (,nil) => 39

| (:: :: ,) => 40

| (, :: ::) => 41

| => 42

in

zardoz [312] ["312"]

end

(c) let

val f = List.foldr (op +) 0

val zardoz:int option list = [SOME 41]

fun zed m =

case m of NONE => 0

| SOME i => i + 1

in

f(map zed zardoz)

end

4

3. (7 points) Recall the de�nition of polymorphic binary trees given in class:

datatype 'a binary_tree =

LEAF of 'a

| NODE of {left:'a binary_tree,

right:'a binary_tree,

data:'a}

Give a de�nition of map for binary trees that takes as input a function to

apply to each data element and a binary tree and produces a new binary

tree of the same shape with the function applied to each data element.

Your map function should be curried and fully polymorphic, similar to

List.map.

fun map (f:'a -> 'b) (t:'a binary tree) : 'b binary tree =

case t of

LEAF x => LEAF (f x)

| NODE fleft,right,datag =>

NODE fleft=map f left, right=map f right, data=f datag

5

4. (8 points) Consider the following signature de�nitions.

signature MUTABLE_PRIOQ = sig

type 'a prioq

exception EmptyQueue

val empty : ('a * 'a -> order) -> 'a prioq

val insert : 'a prioq -> 'a -> unit

val extractMin : 'a prioq -> 'a

end

signature FUNCTIONAL_PRIOQ = sig

type 'a prioq

exception EmptyQueue

val empty : ('a * 'a -> order) -> 'a prioq

val insert : 'a prioq -> 'a -> 'a prioq

val extractMin : 'a prioq -> 'a * 'a prioq

end

These describe interfaces for mutable (destructive) and functional (non-

destructive) priority queues, respectively. We showed in class how to

implement mutable priority queues using heaps. The di�erence is that in

the mutable version, the insert and extractMin operations modify the

input priority queue as a side e�ect, whereas in the functional version,

the new priority queue after an insert or extractMin is part of the

return value, and the original input priority queue is not changed. In

both versions, EmptyQueue is raised if extractMin is called with an empty

queue.

Add a function extract2nd to both signatures. This function is similar to

extractMin, except that it retrieves the element with the second smallest

priority instead of the smallest. The element with the smallest prior-

ity should remain in the queue. In both cases, show how to implement

extract2nd in terms of functions already in the signature.

(enter answers on next page)

6

(a) signature MUTABLE PRIOQ = sig

type 'a prioq

exception EmptyQueue

val empty : ('a * 'a -> order) -> 'a prioq

val insert : 'a prioq -> 'a -> unit

val extractMin : 'a prioq -> 'a

val extract2nd : 'a prioq -> 'a

end

fun extract2nd(p:'a prioq) : 'a = let

val m1 = extractMin p

val m2 = extractMin p

in

insert p m1;

m2

end

(b) signature FUNCTIONAL PRIOQ = sig

type 'a prioq

exception EmptyQueue

val empty : ('a * 'a -> order) -> 'a prioq

val insert : 'a prioq -> 'a -> 'a prioq

val extractMin : 'a prioq -> 'a * 'a prioq

val extract2nd : 'a prioq -> 'a * 'a prioq

end

fun extract2nd(p:'a prioq) : 'a * 'a prioq = let

val (m1,p) = extractMin p

val (m2,p) = extractMin p

val p = insert p m1

in

(m2,p)

end

7

5. (7 points) Match each erroneous expression (a){(g) with its error message

(A){(G). Write the label of the error message in the box to the left of the

corresponding expression. The correspondence is one-to-one.

(a)(D) fun X f = f x

(b)(F) fun f(x:string):int = if size x > 312 then x else "xyzzy"

(c)(E) fun f(x:int):string = if x < 0 then 1 else 1

(d)(B) (fn x => x + 312) "xyzzy"

(e)(A) (fn x => x ^ "xyzzy") 312

(f)(C) "xyzzy" ^ 312

(g)(G) if 1 < 2 then "xyzzy" else 312

(A) Error: operator and operand don't agree [literal]

operator domain: string

operand: int

in expression: ...

(B) Error: operator and operand don't agree [literal]

operator domain: int

operand: string

in expression: ...

(C) Error: operator and operand don't agree [literal]

operator domain: string * string

operand: string * int

in expression: ...

(D) Error: unbound variable or constructor: x

(E) Error: right-hand-side of clause doesn't agree with function

result type [literal]

expression: int

result type: string

in declaration: ...

(F) Error: right-hand-side of clause doesn't agree with function

result type [tycon mismatch]

expression: string

result type: int

in declaration: ...

(G) Error: types of rules don't agree [literal]

earlier rule(s): bool -> string

this rule: bool -> int

in rule: ...

8

6. (10 points) Match each declaration (a){(j) with the resulting functional

type (A){(J) of f. Write the label of the type in the box to the left of the

corresponding declaration. The correspondence is one-to-one.

(a)(I) fun f x y = let val x = y in SOME (x*y) end

(b)(J) fun f x y = let val x = y in SOME (x^y) end

(c)(A) fun f x = case x of NONE => nil | SOME y => y

(d)(B) fun f(x,y) = case x of SOME y => SOME (y+1) | NONE => NONE

(e)(G) fun f x y = if x = y then SOME(x,y) else NONE

(f)(C) fun f x y = if x then NONE else SOME (not x)

(g)(H) fun f(x,y) = case x of NONE => nil | SOME z => [y + z]

(h)(E) fun f y = let val f = 2*y in SOME (f*y) end

(i)(F) fun f x y = let val z = x*y in (SOME z,z) end

(j)(D) fun f(x,y) = case y of nil => x | u::t => (SOME u) :: f(x,t)

(A) 'a list option -> 'a list

(B) int option * 'a -> int option

(C) bool -> 'a -> bool option

(D) 'a option list * 'a list -> 'a option list

(E) int -> int option

(F) int -> int -> int option * int

(G) ''a -> ''a -> (''a * ''a) option

(H) int option * int -> int list

(I) 'a -> int -> int option

(J) 'a -> string -> string option

9

7. (9 points) Consider the recurrence

T (0) = 1

T (n+ 1) = T (n) + 4n + 3

Prove by induction on n that the solution to this recurrence is

T (n) = 2n2 + n + 1

Label clearly the basis and the induction step parts of your proof. In

the induction step, state the induction hypothesis, and indicate exactly

where in your argument it is used. Make sure you are perfectly clear in

this|any ambiguity whatsoever will result in deduction of points.

Basis: For n = 0, we have

T (0) = 1 by the de�nition of T

= 2 � 02 + 0 + 1 by elementary algebra.

Induction step: The induction hypothesis is T (n) = 2n2 + n+ 1. Under

this assumption, we wish to show that T (n+1) = 2(n+1)2+(n+1)+1.

We have

T (n+ 1) = T (n) + 4n+ 3 by the de�nition of T

= (2n2 + n + 1) + 4n+ 3 by the induction hypothesis

= 2(n+ 1)2 + (n + 1) + 1 by elementary algebra.

10

