CS312 Final Exam

	Problem Number
	Possible Points
	Points Received
	Grader

	1.
	15
	
	

	2.
	18
	
	

	3.
	15
	
	

	4.
	11
	
	

	5.
	14
	
	

	6.
	10
	
	

	7.
	18
	
	

	total
	101
	
	

	Name:
	

	NetID:
	(e.g., jmv16 – not 112345)

1. [15 points] For each of the following, tell us whether the statement is true or false.

a. Huffman compression is optimal in the sense that there is no better way to compress text.

b. Merge-sort always runs faster than bubble-sort.

c. Given the choice between an O(56 * lg2 n) and an O(2 * lg256 n) algorithm, it's best to choose the one that runs in O(2 * lg256 n).

d. Java has subtype polymorphism, whereas ML has parametric polymorphism.

e. The garbage collector we described (and you built) for Project 5 performed a depth-first traversal and copy of all of the live data.

f. Appending two lists of length n takes O(n2) time.

g. Continuations can be used to implement threads.

h. Writing "if e then true else false" is just plain silly.

2. [18 points total] Consider the following code:

fun foldl (f : 'a*'b->'b) (accum:'b) (l:'a list) : 'b =
 case l of
 Nil => accum
 | hd::tl => foldl f (f(hd,accum)) tl

fun exists (f : 'a -> bool) (l:'a list) : 'b =
 foldl (fn (x,y) => f(x) orelse y) false l

a. [4 points] Using the function exists, write a function has_string which, when given a string s and a list of strings x, returns true iff s is in the list x.

b. [6 points] Assume that we pass to has_string a string s of at most N characters, and a list x of M strings, where the maximum size of any string in the list is N characters. Using big-O notation, express the running time of your has_string function.

c. [4 points] The bad thing about the way we have coded exists is that it runs over the whole list even if the first element in the list is what we are looking for. Using foldl, rewrite exists so that it stops processing the list as soon it finds what it is looking for. Your definition should not require writing a recursive function.

d. [4 points] Is your new version of exists asymptotically faster than the old version?

3. [15 points] Briefly explain how Limpel-Ziv compression works. Include a description of any data structures used by the algorithm. Your explanation should be at most a couple of paragraphs.

4. [11 points] ML doesn't provide for-loops as in Java or C, but they can be easily simulated. Write a function "for" that has the following type:

 int->(int -> bool)->(int->int)->(int->unit) -> unit

and so that the following fragments of code evaluate as indicated:

(* helper functions *)
fun inc(i:int) = i + 1
fun dec(i:int) = i - 1
fun less(j:int) (i:int) = i < j
fun gte(j:int) (i:int) = i >= j

(* prints out the numbers from 0 to 9. Equivalent to the following psuedo Java:
 * for (int i = 0; i < 10; i++) print(i);
*)
for 0 (less 10) inc (fn i => print (Int.toString i))

(* prints out the numbers from 10 to 1. Equivalent to:
 * for (int i=10; i >= 1; i--) print(i)
 *)
for 10 (gte 1) dec (fn i => print (Int.toString i))

5. [14 points total] Consider the following heap:

a. [6 points] Show the standard array representation of the heap with the root at position 0.

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
	
	
	
	
	
	
	
	
	
	

b. [4 points] Draw a picture of what the heap would look like (as a tree) after removing the minimum element.

c. [4 points] Draw a picture of what the heap would look like after inserting 4 into the original heap.

6. [10 points] Draw a box-and-pointer diagram (as we did in class) that shows what memory looks like after evaluating the following expression.

let val z = 312
 val f = fn x => (fn y => x+y+z)
 val z = ref 41
in
 (f(1))(1)
end

7. [18 points] Suppose we are given an interface to the file system as follows:

type file
type directory
datatype object = F of file | D of directory

val root : directory
val file_hash : file -> int
val file_compare : file * file -> order
val dir : directory -> object list
val print_path : file -> unit

where root is the top-level directory, dir takes a directory and returns a list of file system objects contained in that directory (either files or sub-directories) in an arbitrary order, file_compare takes two files and compares them to see if they have the same contents, file_hash computes an integer hash of the contents of a file, and print_path prints out the full path name of a file.

You may assume that (1) the file system forms a tree (i.e., no object is contained in more than one directory), (2) there are a total of M files each of size at most N, (3) comparing two files takes linear time, (4) computing the hash of a file takes linear time, (5) calling dir or print_path takes constant time.

Describe an efficient algorithm that prints out all duplicate files in the file system. For example, suppose /usr/jgm/foo.txt and /tmp/bar.txt are the same and /sys/include/types.h, /etc/passwd, and /dev/null are all the same, then your algorithm should print something like:

 same files: /usr/jgm/foo.txt /tmp/bar.txt
 same files: /sys/include/types.h /etc/passwd /dev/null

Note that all files that are the same should be printed together.

Your description should include an English explanation of the key data structures and sub-routines, some pseudo-ML-code that implements the algorithm, and an analysis of the expected running time.

[Answer to #7]

3

14

8

16

19

15

9

20

