1. Reading: K. Rosen Discrete Mathematics and Its Applications, 4.4
2. The main message of this lecture:

The classical definition of probability came from the gambling games theory: the ratio of a number of successful outcomes to the of number of all possible outcomes, presuming they are all equally likely.

Imagine a certain experiment that can equally likely produce some known finite number n of outcomes, for example, a die is rolled, $n=6$. Imagine also that we bet on some kind of outcomes, for example, that a die comes up an even number, here 2,4 , or 6 . Intuitively, the probability P of us winning is the number of k successful outcomes divided by the total number of outcomes n :

$$
P=\frac{k}{n}
$$

Definition 19.1. Experiment is a procedure that yields one of a given set of possible outcomes. Sample space S is the set of all possible outcomes of a experiment. Event E is a subset of the sample space. The probability of an event E is

$$
p(E)=\frac{|E|}{|S|} .
$$

It follows immediately from the definition that $0 \leq p(E) \leq 1$. To establish other fundamental properties of probability we will need to know counting. Note that there are two major assumptions under which this classical definition of probability operates:

1. Sample space S is finite, 2. All outcomes in S are equally likely.

Those conditions are often met, but in many applications one has to consider infinite state spaces with pretty sophisticated probability distribution on them. In general, probability is a very hard area of mathematics.

Example 19.2. Experiment: two dice are rolled. The sample space is the product
$S=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}=\{(1,1)(1,2) \ldots(1,6)(2,1)(2,2) \ldots(2,6)(3,1) \ldots(6,6)\}$. Possible outcomes are ordered pairs (the first roll, the second roll). The total number of possible outcomes is $|S|=6 \cdot 6=36$. An event: the sum of the two dice is five gives the set $e=$ $\{(1,4)(2,3)(3,2)(4,1)\}$, four pairs total. The probability that when two dice are rolled the sum is five is $p=4 / 36=1 / 9$.

Example 19.3. An urn contains three blue balls and five red balls. What is the probability that a randomly chosen ball is blue? Imagine that the balls are numbered. Then S consists of 8 possible outcomes of picking an individual ball, $|S|=8$. Those outcomes are assumed equally likely (the code word for this assumption is "randomly"). Since any of three blue balls does it, the event E here consists of three successful outcomes, $|E|=3$. The probability $p=3 / 8$.
Example 19.4. (Lottery) What is the probability to pick the correct six numbers out of 40 ? Sample space S here is the set of all possible 6-combinations out of 40 .

$$
|S|=\frac{40!}{6!34!}=3838380
$$

Event E here contains only one winning combination, $|E|=1$. The probability of winning is then $p=1 / 3838380$.
Example 19.5. (Poker) Find the probability that a hand of five cards contains four cards of the same kind. Here S is the set of all possible hands of five cards. There are 13 different kinds, four cards each, the total $13 \cdot 4=52$ cards in a deck. Since a hand is not ordered, we use combinations to evaluate the number of hands: $|S|=C(52,5)$. E is the set of all hands containing four cards of the same kind. To evaluate $|E|$ we use specify a hand from E by stages and use the Product Rule.

Stage 1: picking a kind for four cards. There are 13 kinds, $C(13,1)$ choices. After a kind is selected we have four cards out of five in a hand chosen.

Stage 2: picking a fifth card out of remaining $52-4=48$ can be made in $C(48,1)$ ways. The probability of getting four card of one kind in an a hand is then

$$
p=\frac{C(13,1) \cdot C(48,1)}{C(52,5)}=\frac{13 \cdot 48}{2598960} \sim 0.00024
$$

Definition 19.6. Complementary event $\bar{E}=S-E$. Obviously, $|\bar{E}|=|S|-|E|$, therefore

$$
p(\bar{E})=\frac{|\bar{E}|}{|S|}=\frac{|S|-|E|}{|S|}=\frac{|S|}{|S|}-\frac{|E|}{|S|}=1-p(E) . \text { Likewise, } p(E)=1-p(\bar{E})
$$

Example 19.7. Find the probability that an integer x ($0 \leq x \leq 999999$) has at least one digit 8 in its decimal expansion. We assume tacitly that each of 10 integers $0,1,2, \ldots, 9$ is equally likely to appear in each of 6 decimal positions. $S=$ total number of integers from 0 to 999999, $|S|=10^{6}$. E is the set of those numbers from S which contain at least one digit 8 . There is a straightforward tedious way of evaluating $|E|$: consider cases when the number of 8 s is one, two, three, etc, six. Choose positions for those 8 s , fill the remaining positions with digits other then 8 , etc. If you have time and do not make many mistakes in calculations, you could eventually come with the right answer. However, considering the complementary event and then using a formula from 19.6 makes life much easier here. \bar{E} consists of all numbers not containing 8s, $|E|=9^{6}$ (there are six positions to fill and nine digits $\{0,1, \ldots, 7,9\}$ to choose from independently for each position). Therefore, $p(\bar{E})=9^{6} / 10^{6}=(0.9)^{6} \sim 0.53$, $p(E)=1-p(\bar{E}) \sim 1-0.53=0.47$.
Example 19.8. (Tossing a coin) A sequence of 10 bits is randomly generated. What is the probability that at least one of them is 1 ? E is "at least one bit is 1 ", \bar{E} is "all bits are $0^{\prime \prime}$. It is clear, that counting \bar{E} is much easier: $|\bar{E}|=1$, and $p(\bar{E})=1 / 2^{10}=1 / 1024$. Then $p(E)=1-p(\bar{E})=1-1 / 1024=1023 / 1024$.
Theorem 19.9. $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$
Proof. Since $\left|E_{1} \cup E_{2}\right|=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|, p\left(E_{1} \cup E_{2}\right)=$
$=\frac{\left|E_{1} \cup E_{2}\right|}{|S|}=\frac{\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cap E_{2}\right|}{|S|}=\frac{\left|E_{1}\right|}{|S|}+\frac{\left|E_{2}\right|}{|S|}-\frac{\left|E_{1} \cap E_{2}\right|}{|S|}=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$
Example 19.10. A positive integer ≤ 100 is randomly selected. What is the probability that it is divisible by 2 or 3 ? Let E_{1} be " x is divisible by $2 ", p\left(E_{1}\right)=50 / 100$. Let E_{2} be " x is divisible by $3 ", p\left(E_{2}\right)=33 / 100$. Then $E_{1} \cap E_{2}$ is x is divisible by both 2 and $3 ", p\left(E_{1} \cap E_{2}\right)=16 / 100$. We have to evaluate $p\left(E_{1} \cup E_{2}\right)$, which is then equal to $50 / 100+33 / 100-16 / 100=67 / 100$.
Homework assignments. (due Friday 03/16).
19A:Rosen4.4-6; 19B:Rosen4.4-16; 19B:Rosen4.4-28; 19c:Rosen4.4-32.

