CS 222 - Practice Problems Solutions July 20, 2001

1. Faster Trigonometric Interpolation (but not the fastest!)

We need to solve the system Py = f in $O(n^2)$ flops. Rewriting this system we have that $y = P^{-1}f$. Using the fact that $P^TP = D$ we have:

$$P^T P = D \Rightarrow D^{-1} P^T P = I \Rightarrow P^{-1} = D^{-1} P^T$$

Substituting what we got for P^{-1} above into $y = P^{-1}f$ we have

$$y = D^{-1}P^Tf$$

Now, note that

if
$$D = \begin{bmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{bmatrix}$$
 then $D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & 0 & 0 \\ 0 & \frac{1}{d_2} & 0 & 0 \\ 0 & 0 & \frac{1}{d_3} & 0 \\ 0 & 0 & 0 & \frac{1}{d_4} \end{bmatrix}$

Note that the operation $P^T f$ is $O(n^2)$ flops since we can think of this as n inner products of a column of P^T and f. We would only store the appropriate column of P^T resulting in O(n) storage. Taking into account D^{-1} , then we just need to divide the inner products by the appropriate d_k :

```
function F=myCSInterp(f)
n=length(f); m=n/2; y=zeros(n,1);
tau=(pi/m)*(0:n-1);

for j=0:m
   if (j==0 | j==m)
      y(j+1)=(cos(j*tau)'*f)/n;
   else
      y(j+1)=(cos(j*tau)'*f)/m;
      y(j+m+1)=(sin(j*tau)'*f)/m;
   end
end
```

F=struct('a',y(1:m+1),'b',y(m+2:n));

2. Periodic Cubic Splines

We know each cubic has 4 unknowns. Since there are n-1 cubics, this gives 4(n-1) total unknowns.

(a) The constraints that cause S to interpolate the data are $(q_i(x))$ is the i-th local cubic)':

$$q_i(x_i) = y_i \text{ for } i = 1: n-1$$

 $q_i(x_{i+1}) = y_{i+1} \text{ for } i = 1: n-1$

(b) The constraints that cause S to have continuous first derivatives at x_2 through x_{n-1} are:

$$q'_{i}(x_{i+1}) = q'_{i+1}(x_{i+1})$$
 for $i = 1: n-2$

(c) The constraints that cause S to have continuous second derivatives at x_2 through x_{n-1} are:

$$q_{i}''(x_{i+1}) = q_{i+1}''(x_{i+1})$$
 for $i = 1: n-2$

(d) The periodicity constraints are that S'(0) = S'(T) and S''(0) = S''(T) (note that the constraint S(0) = S(T) has already been accounted for in (a)). This translates to:

$$q'_1(x_1) = q'_{n-1}(x_n)$$

 $q''_1(x_1) = q''_{n-1}(x_n)$

3. Fun with Splines

Here are the steps to calculate the arc length:

(a) Find the spline coefficients a_i, b_i, c_i, d_i :

```
V=MySpline(x,y);
```

where MySpline is a function that computes the coefficients using the Vandermonde representation. This function returns a matrix V that contains the coefficients.

(b) Create a function for S'(x) that evaluates the derivative (using Locate.m and Horner's rule for evaluation)

```
function y=g(z,x,V);
% z is a vector of evaluation points
% x is a vector of interpolation points
% V is a matrix that contains the coefficients of the spline
n=length(z);
i=zeros(n,1);
for k=1:n
   i(k)=Locate(x,z);
end
sp=V(i,2) + z.* ( 2*V(i,3) + 3*V(i,4) .*z); %Horner's rule
y=sqrt(1+sp.*sp);
```

(c) Integrate using quad

```
n=length(x);
arclength=quad('g',x(1),x(n),1e-5,[],x,y);
```

For this problem, I'm more concerned with the steps used to find the arc length than the actual Matlab code. Nevertheless, I have included the code to aid in studying.