CS 222 - Practice Problems Solutions
July 20, 2001

1. Faster Trigonometric Interpolation (but not the fastest!)

We need to solve the system Py = f in O(n?) flops. Rewriting this system we have that y = P~1f.
Using the fact that PTP = D we have:

PTP=D = D 'PTpP=] = pl=p1'pT

Substituting what we got for P~! above into y = P~!f we have

y=D"'PTf
Now, note that
di 0 0 0 = 0 0 0
T A I T X % dg ’
0 0 0 dy 0 0 0 g;

Note that the operation PT f is O(n?) flops since we can think of this as n inner products of a column
of PT and f. We would only store the appropriate column of PT resulting in O(n) storage. Taking
into account D!, then we just need to divide the inner products by the appropriate dy:

function F=myCSInterp(f)
n=length(f); m=n/2; y=zeros(n,1);
tau=(pi/m)*(0:n-1);

for j=0:m
if (j==0 | j==m)
y(j+1)=(cos(j*tau)’*£f)/n;
else
y(j+1)=(cos(j*tau)’*£f)/m;
y(j+m+1)=(sin(j*tau) ’*f)/m;
end
end

F=struct(’a’,y(1:m+1),’b’ ,y(m+2:n));

2. Periodic Cubic Splines

We know each cubic has 4 unknowns. Since there are n — 1 cubics, this gives 4(n — 1) total unknowns.
(a) The constraints that cause S to interpolate the data are (¢;(z) is the i-th local cubic)’:

gi(z;)) = y fori=1:n-1
4i(ziv1) = yiqr fori=1:n-1

(b) The constraints that cause S to have continuous first derivatives at x5 through z,_; are:

qi(zip1) = q2+1($i+1) fori=1:n—-2



(c) The constraints that cause S to have continuous second derivatives at z2 through z,_; are:
g (zig1) = qgf+1(mi+1) fori=1:n—-2

(d) The periodicity constraints are that S’(0) = S’(T) and S”(0) = S”(T') (note that the constraint
S(0) = S(T) has already been accounted for in (a)). This translates to:

qi(z1) = g 1(zn)
7 (z1) = qn_1(za)

3. Fun with Splines

Here are the steps to calculate the arc length:

(a) Find the spline coefficients a;, b;, ¢;, d;:
V=MySpline(x,y);
where MySpline is a function that computes the coefficients using the Vandermonde representa-
tion. This function returns a matrix V that contains the coefficients.

(b) Create a function for S’(z) that evaluates the derivative (using Locate.m and Horner’s rule for
evaluation)

function y=g(z,x,V);

% z is a vector of evaluation points

% x is a vector of interpolation points

% V is a matrix that contains the coefficients of the spline
n=length(z);

i=zeros(n,1);

for k=1:n
i(k)=Locate(x,z);
end

sp=V(i,2) + z.x ( 2xV(i,3) + 3*V(i,4) .*z); %Horner’s rule
y=sqrt(1+sp.*sp);

(c) Integrate using quad

n=length(x);
arclength=quad(’g’,x(1),x(n),1e-5,[]1,x,y);

For this problem, I'm more concerned with the steps used to find the arc length than the actual
MATLAB code. Nevertheless, I have included the code to aid in studying.



