CS 222 - Homework 2
Due in lecture Wednesday, July 18, 2001

The policies for this (and other problem sets) are as follows:

e The policies for turning in late HW assignments are outlined on the course information sheet passed
out in class and on the class website.

e Problem sets may be done individually or in teams of two. Put your name or names on the front page.
Re-read the academic integrity statement on the web (cited on the course information sheet).

e When MATLAB code is part of an assigned problem, you must turn in your code and all output
required to receive credit. Points will be deducted for poorly commented code, redundant calculations,
and inefficient code. All code should be vectorized as much as possible.

1. (10 points) You saw in lecture that Monte Carlo estimation could be used to estimate the value of
7 (see also section 1.3 - page 36). Using the same idea, we can also use Monte Carlo estimation to
approximate the value of integrals that cannot be evaluated analytically.

In particular, let f(z,y) = e*v” . In this problem, you will devise a way to approximate the value of

/0 1 /0 " e, vy

using Monte Carlo estimation. You are to write a MATLAB function DoubleIntEst that implements
your method. DoubleIntEst should take as a parameter n (the number of trials) and should out-
put the approximate value of the integral. Use the command rand(’seed’,.12345) at the top of
DoubleIntEst.

Download hw2pitest.mfrom the course web site. Run this script and turn in a printout of its output.
In addition, turn in a printout of your function DoubleIntEst. Your code should be fully vectorized and
there should be no loops. It should also be flop efficient. Since there are multiple ways of approaching
this problem, it is especially important that you comment your code well. Make sure all variable names
are specified in the comments of your code (similar to the blocks of comments given in HW1).

2. (5 points) Consider the following functions
flz)=vz glz)=/01+=z

The functions f(z) and g(z) were both interpolated with equally spaced points using a second-degree
polynomial (InterpN.m was used to generate the interpolant) on the interval [0, 1].

Consider the following two graphs that contain the function and its second-degree polynomial inter-
polant:

fx)=x"2 g0)=(.1+x)"?

0.8

0.6}

0.4r

0.21 0.2

ok : 0 :
0 05 1 0 05 1

Clearly, the interpolant over f is much less accurate than the interpolant over g. Explain why this is
the case using the error analysis presented in Section 2.3.

. (15 points) The following functions (specified in your text) are available on the course website: InterpN.m,
HornerN.m, CSInterp.m, and CSEval.m. You will need to use these functions for this problem.

Many engineering problems involve functions which are periodic, but not continuous. One ubiquitous
such function is the squarewave. This waveform is given explicitly by

0 0<2<05
1 05<z<1
squv(z) =<¢ 0 1<z<1b
1 15<z<?2
0 x=2

Since noncontinuous functions are difficult to deal with, a common technique in analyzing them is to
approximate them with a continuous function. However, the question then becomes, “how good is the
approximation?” To answer this question, we need to have a “distance” function which measures how
“close” one function is to the other. For any functions f and g defined on [0, 2], the distance function
we shall use is given by

dist(f.9) = [() = g(2))* .

(This is called the L?-distance between f and g, and it is fundamental to Fourier Analysis.) In MATLAB,
this can be implemented with the following code:

function d=dist(x,f,g)

% x is an m-vector

% £ and g are m-vectors containing the
% values of £(x) and g(x), respectively
diff=(f-g);

diffsq=diff.*diff;

d=trapz(x,diffsq);

(a) Set m = 200. Let n be a positive integer. Choose n equally spaced points in [0, 2] with

O=m << ... <2pp =2

Let p be the degree (n — 1) polynomial which interpolates squwv. l.e., p(z;) = squwv(z;) for
t=1:n. Also, let

polyerror = dist(p, squv).

Write a MATLAB script which will compute p and polyerror given n. Experiment with different
values of n and use the value of n that minimizes polyerror.

(b) Let k be an even positive integer (k must be even to use CSInterp.m). Choose k equally spaced
points in [0, 2] with

D=mm << ... <2 =2
Let ¢ be the trigonometric interpolant of sqwwv. Le., ¢(z;) = squuv(x;) for i = 1 : n. Also, let
trigerror = dist(t, squv).

Write a MATLAB script to compute ¢ and trigerror given k. Experiment to find the smallest
value of k such that trigerror is less than the minimal value of polyerror you found above. You
may include code to (a) and (b) in the same MATLAB script if you wish.

In a single figure, plot sqwv (solid line), its polynomial interpolant, p (dotted line), and its
trigonometric interpolant, ¢ (dashdot line), for the values of k£ and n you found above. Use m
points in your plots. Label your axes and in the title of your plot include the value of £ and n
that you used. Also printout the associated values for polyerror and trigerror.

Turn in your script(s) and the output (the figure, polyerror, and trigerror). If you create any functions
(other than dist), turn in a printout of those functions as well.

. (10 points) The following functions (specified in your text) are available on the course website: pwL.m,
pwC.m, pwCEval.m, and Locate.m. You may find these useful in this problem (material in this problem
involves Section 3.1 and 3.2 which will be covered in class on Friday and Monday).

We are covering piecewise linear and piecewise cubic interpolation. You may (or may not...) have
wondered why piecewise quadratic interpolation is not covered in the text. This problem should help
to answer this question.

In piecewise quadratic interpolation, a function g(z) is interpolated with a quadratic on each of the
subintervals. For this problem, define

e* — (cos(3mz))?

9(2) = 3+z

Analogous to Section 3.2.2 we assume z; < 22 < ... < 2z, and that @Q(z) interpolates the data
(z1,91), .- (Zn, yn). We define ith local quadratic by

9i(2) = ai + bi(z — z;) + (2 — 2i) (2 — zi1)
Therefore the piecewise quadratic polynomial is defined by:
q1(z) ifz; <z<ay
q2(2) if 29 <2< 23
Qn—l(z) if Tn-1 S z S Tn

(a) Write a function, g in MATLAB that takes as input a vector z and outputs a vector with the values

of g(z).

(b) Using the setup in Section 3.2.2 as an example, derive the equations to calculate a;, b; where we
require that Q(z;) = y;. Show all work.

(c) We will require that @(z) has one continuous derivative. In order to do this, we can define ¢; in
the following way (you do not need to show why this works):

1 Yi —Yi—a Yi+1 — ¥
¢i = ————— |ci—1(zi — xio1) + -
Ti — Tit1 Ti —Li—1 Tit1 — T

fori=2:n-1

Notice that ¢; depends on ¢;_1. Therefore, once ¢y is specified, we can easily calculate all of the
c,1=2:n—1.

Create a function pwQ that computes the piecewise quadratic interpolant of g(z), and a function
pwQEval that evaluates the polynomial calculated in pwQ at a vector of values z.

(d) Let n=8, x=1inspace(-.5,.5,n)’, y=g(x). Using the functions on the course web site and your
functions created in parts (a) and (c), write a MATLAB script that computes the piecewise cubic
Hermite interpolant and the piecewise quadratic interpolant of g where

Clz;)) = Q(zi) = wi fori=1:n

(C'is the cubic Hermite interpolant).

Evaluate each of these interpolants at m = 50 evenly spaced points in [—0.5,0.5]. Output the
following:

e the vectors a, b, c, d that specify the cubic Hermite interpolant and the vectors aq, bq, cq that
specify the quadratic interpolant (set cq(1) = 5).

e two figures; one figure should be a plot of the function g(z) (solid line) and its cubic Hermite
interpolant (dotted line), the second figure should be a graph of the function g(z) (solid line)
and its quadratic interpolant (dotted line). Label your axes and give each plot a title. Use
legend to label each graph on your figures.

(e) Now, add 1 to the value of y(1). Re-do part (d) with this “perturbed” data. Using all of your plots
from parts (d) and (e), give a couple of reasons why it may be more beneficial to use piecewise
cubic Hermite interpolation rather than piecewise quadratic interpolation.

Turn in printouts of all your functions (g, pwQ, pwQEval, and any others that you create). In addition,
turn in your scripts from parts (d) and (e), corresponding output, and all of your figures (there should
be four total figures).

