CS 222: Prelim 1 Solutions

95-100 XXXXXXXX

90-94 XXXXXX

85-89 XXXXX

80-84 XXXXXXXX

75-79 XXXXXXXXX

70-74 XXXXXXXXXXXXXX

65-69 XXXXXXXXXXXXXXXXXXXXXXX
60-64 XXXXXXXXXXXXXXXXXX Median = 58
55-59 XXXXXXXXXXXXXXXX

50-54 XXXXXXXXXXXXXXXKXXKXXX
45-49 XXXXXXXXXXXXXXXXXXXXXXX
40-44 XXXXXXXXXXXXXXXXXXX
35-39 XXXXXXXXXXX

30-34 XXXXXXXXX

< 30 XXXXXX

Rough grade guidelines A = [70,100], B = [50,64], C = [35,44]. Study the solutions before requesting a regrade.
Regrades due by Wednesday March 29. Indicate on the cover or on separate pieces of paper what it is that
you want us to regrade. DO NOT mark up your solutions so that we can be assured that academic integrity
code is being upheld. Recall that it is our policy to make copies of a random subset of the exams.

1. (a) In a base-2 floating point number system with 10-bit mantissas, exactly how many floating point
numbers are greater than or equal to 7 and less than or equal to 9?7 You must show work to receive full credit.

5points:
Spacing to the left of 8 is 2710 x 23 = 277, So there are 27 + 1 = 129 floating point numbers from 7 to 8
including 7 and 8.

5 points:
Spacing to the right of 8 is 2719 % 24 = 276, So there are 2% + 1 = 65 floating point numbers from 8 to 9
including 8 and 9.

So there are 129 + 65 -1 = 193 floating point numbers in between 7 and 9.
-1’s for off-by-one mistakes
(b) Set up a 4-by-4 linear system that determines a1, az, as, a4 so that if
p(z) = a1 + asz + asz? + asx®

then p(0) =1, p’(1) = 0, p(1) = 3, and p(—2) = p(2). Do not solve the system.

100 0 ay 1
012 3 as | |0
111 1 as |~ | 3
0 40 16 | | a4 0

Equations 1,2, and 3 are 2 points each. Equation 4 is worth 4 points. Ok to write out in equation form rather
than matrix-vector form.

2. Complete the following MATLAB function so that it performs as specified:

function x = F(d,c,b)
% d is a column n-vector.
% c is a column m-vector.
% b is a column n-vector.
%
% X is a column n-vector that solves Ax = b where
%
% A= c()*I + c(2)*D + c(3)*D"2 + ... + c(m)*D~(m-1)
h
% where I is the n-by-n identity matrix and D is the n-by-n diagonal
% matrix with D(i,i) = d(i), i=1:n. It may be assumed that the matrix A
% is nonsingular.

Make use of the nested multiplication idea for polynomial evaluation, e.g.,
((caz +e3)z + o)z 4 ¢y = 42 + c32® + oz + 1.

and vectorize your solution.

% 1 point:

m = length(c);
n = length(d);
y = c(m)*ones(n,1);

% 6 points:
for i=m-1:-1:1

y =y.%d + c(i);
end

% 3 points
x =b./y;

-10 points for explicitly setting up D and I and then doing something like this

A = c(m)*I;
for i=m-1:-1:1
A = AxD + c(i)*I;
end
x = A\b;

This involves O(mn?) flops.

3. We want to interpolate a function f on [a,b] with error less than tol. When is it cheaper to set up a
piecewise linear interpolant L(z) with a uniform partition than a piecewise cubic hermite interpolant C(z)
with a uniform partition? Your answer should make use of the following facts and assumptions:

o If ¢ is the linear interpolant of f on an interval [«, 8], then on that interval the error is no bigger than
My(3 — a)?/8, where My is an upper bound for |f()(z)|. Assume that M, is known.

o If p is the cubic hermite interpolant of f on an interval [«, 3], then on that interval the error is no bigger
than M, (8 — a)*/384, where M, is an upper bound for |f*)(z)|. Assume that M, is known.

e A vectorized MATLAB implementation of the function f is available and it requires on seconds to execute
when applied to an n-vector. Assume that o is known.

e A vectorized MATLAB implementation of the function f’ is available and it requires 7n seconds to execute
when applied to an n-vector. Assume that 7 is known.

The following grading guidelines are only approximate. It was necessary to do a lot of ”interpolation” to
give partial credit in this problem. If you didn’t look at this as a piecewise polynomial problem you didn’t get
more than 5-7 points, if that.

Let assume we base the interpolant on n points, x = linspace(a,b,n). This means that the subinterval
length is h = (b —a)/(n —1). (2 points)
In the linear case we must choose n to be the smallest integer so that

Mah?/8 = My(b—a)?/(8(n — 1)?) <= tol (4pts)

ny = ceil ((b —a)4/ % + 1) (2pts)

In the piecewise cubic hermite case we must choose n to be the smallest integer so that

i.e., set n = ny where

Myh*/384 = My(b—a)*/(384(n — 1)*) <=tol (4pts)

i M.
ng = ceil ((b —a)y/ 38T;ol + 1) (2pts)

With n; and ns so determined we can compare execution times. We should do piecewise linear if

i.e., set n = ny where

ony < (74 o)ng (6pts)

and piecewise cubic otherwise.
-4 if 7 not involved correctly.

4. Suppose A is a given n-by-n nonsingular matrix. To compute its LU factorization we start by adding
multiples of the first row to rows 2 through n. The multiples are chosen so that components (2,1),...,(n,1)
are zeroed. (a) Write a MATLAB script that modifies A(2:n,:) in this way. It is not necessary for you to
vectorize your script. (b) Explain in English how partial pivoting changes the script in part (a). (¢) Explain
in English why partial pivoting does not significantly add to the flop count of the overall algorithm.

% 4 pts
v(2:n) = A(2:n,1)/A(1,1);
% 6 pts
for i=2:n
A(di,:) = A(i,:) - v(@)*A(1,:);
end

(b) Scan abs(A(:,1))for the largest value and interchange that row and row 1. (5 points)

(¢c) The search for the maximal element in a subcolumn is an order of magnitude less than the update of
the submatrix that follows. This means that pivoting costs O(n?) while the elimination process itself is O(n?).
(5 points)

5. Suppose f(t) and g(t) are functions that take a real scalar ¢ and return a real column n-vector. Assume
that A is a nonsingular n-by-n matrix. We wish to plot a spline approximation of

h(t) = f(t)TA™ (1)

across the interval [0,1]. To that end, assume n and A are available along with functions f (t) and g(t) that
implement f(t) and g(t) respectively.

Write a MATLAB script that plots the function S across [0,1] where S is the not-a-knot spline interpolant
of h(t) at t =0.0,0.1,0.2,...,0.9,1.0. Make effective use of the MATLAB functions LU and SPLINE:

[L,U,P] = LU(A) returns lower triangular matrix L, upper
triangular matrix U, and permutation matrix P so that
PxA = Lx*U.

YY = SPLINE(X,Y,XX) uses cubic spline interpolation
to find a vector YY corresponding to XX. X and Y are the
given data vectors and XX is the new abscissa vector.

[L,U,P] = 1u(h);
tvals = linspace(0,1,11);
hvals = zeros(11,1);
for i=1:11
hvals(i) = f(tvals(i))’*(U\L\(P*g(tvals(i))));
end
tau = linspace(0,1)’;
svals = spline(tvals,hvals,tau);
plot(tau,svals)

6 points for LU outside loop
8 points for using L,U, and P correctly to get hval(i)
6 for the stuff after the loop

