Week 14 Review + What I Do

Paul Chew CS 212 – Spring 2004

Announcements

- Part 4
 - There is no type-casting in Bali4, but you can assign to a supertype
 - If A is a supertype of B and aa and bb are declared as types A and B, respectively then
 - aa = bb; // is legal
 - bb = aa; // is notReminder: Download the
- latest SaM Simulator
 Part 4 regrades
 - Grades available by Wednesday
 - Regrade requests must be in by Friday

- CMS cleaning
 - If you are still in the course, but have been removed from CMS, let me know right away
- Sections
 - There is a Section meeting today (7:30 in 205 Upson)
 - There is one Section meeting on Monday (12:20 in ???)
- Please participate in the online Course Evaluation
 - There is also a paper survey to fill out today

2

Ouick Overview

- Introduction
 - · Computer architecture
 - Machine language & assembly language
 - Intro to SaM
- Compilers
 - Lexical analysis & parsing
 - Abstract Syntax Trees
 - Recursive descent parsing & code generation

- Software Engineering
 - Use of abstraction
 - Specification & validation
 - · Testing & debugging
 - Models for software development
 - Top-down vs. bottom-up design
 - Evaluating a design

.

More Overview

- Implementing recursive functions
 - Stack frames
- Implementing arrays
- Implementing objects
 - Use of the *Heap*
 - Dispatch vectors

- Software Engineering Tools
 - Unix
 - Programming languages
 - Scripting languages
 - Regular expressions
 - Makefiles
 - Version control
 - UML
 - Profiling

4

What I Do: Computational Geometry

- Using a computer to solve geometric problems
 - Get to use lots of data structure ideas
 - Example
 - Given n line segments in the plane, report all intersections
 - Uses both a PQ and a Balanced Tree
- Areas I work in
 - Motion Planning
 - Meshing
 - Shape Matching
 - computer visionprotein matching
 - More theoretical questions
- sweepline

The Delaunay Triangulation

- Has the "Empty Circle Property" (each Delaunay triangle's circumcircle is empty)
- Is commonly used for *meshing*

initial sites

a Delaunay triangulation

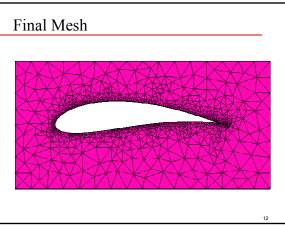
an empty circle

Adaptive Software Project (ASP)

- Adaptivity at three levels
 - Application Level
 - * Choosing among physical models
 - Algorithm Level
 - Choosing among algorithms
 - System Level
 - Using system resources effectively
- Problem domains
 - fracture mechanics
 - · reactive fluid flows

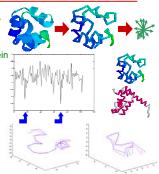
Necessary Tools

- Geometric modelers
 - · Existing modelers are mostly inadequate
- Mesh generators
 - Need quality guarantees
- Visualization tools
- Components for different physical models
 - Different domains
 - fluid flow, structural mechanics, heat flow
 - Different scales
 - * atomic scale, grain scale, structural scale


- Components for different solution techniques (algorithms)
 - finite elements, boundary elements, finite differences, ...
- Framework for combining components
- System tools
 - Runtime environment
 - Dynamic load balancing
 - Fault tolerance (processor failure)
 - Compiler support

ASP Meshing Requirements

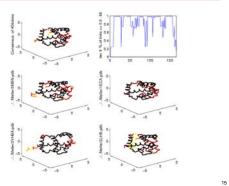
- Control of element density
 - · Small elements (in "interesting" regions) for accuracy
 - Large elements (elsewhere) for efficiency
- Allow internal boundaries
 - · Needed to represent. e.g., a crack
- Ideally: guarantee of element quality
 - · Nice, but unnecessary for a single mesh
 - But we have many meshes as geometry changes over time


Initial Crude Mesh

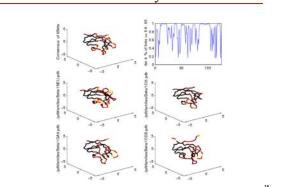
During Improvement

Protein Shape and URMS Protein function is largely

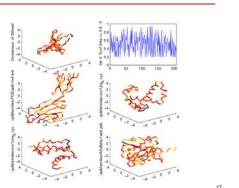
- Protein function is largely based on the protein's geometric shape
- How do we analyze protein shape?
- Our technique: URMS (Unit-vector Root Mean Square distance)
- Advantages
 - Insensitive to outliers
 - Efficient to compute
 - Equal weight for all portions



Protein Families & Consensus Shape


- Evolution theory ⇒ a protein ancient ancestor evolved into a family of proteins
- Membership in a protein family is expressed by sequence similarity, but is more strongly expressed by structure similarity
 - 25-30% sequence resemblance (almost always) ensures shape resemblance
- Goal: Create a Consensus Shape Algorithm that produces
 - a multiple alignment of structures, and
 - a single (core) structure that summarizes the structural information for a protein family

14


An Alpha Protein Family (Globins)

A Beta Protein Family

Unrelated Proteins

17