
1

Week 11
Implementing Objects 

Paul Chew
CS 212 – Spring 2004

2

Announcements
Part 3

Be sure you handle all parts 
of the Part 3 grammar!
There is a .jar file containing

BaliSemanticException.java
BaliSyntaxException.java
Compiler.java
IllegalBaliException.java
MultipleBaliException.java

Use this .jar file instead of 
individual files

To use the Part 3 .jar file
Make sure the .jar file is on 
your class path (in DrJava, 
look under Edit:Preferences)
Place the following code at 
start of any file that needs to 
use stuff from the .jar file:

import edu.cornell.cs.cs212.sp2004.part3.*;

Sections are meeting
Today
Next Monday, too

Make use of Office Hours!

3

Intuitive View of an Object
class A {

int i, j;
A (int ii, int jj) {

i = ii; j = jj;
}

int sum () {
return i + j;
}

int prod () {
return i * j;
}

}

a = new A(4, 8);

reference to objecta

value of i

value of j

code for sum

code for prod

i

j

sum

prod

somewhere in the Heap

This is close to what’s actually done 
except we don’t really store the 
code with the object

4

Calling a Constructor
Goal: On return, address of 
new object should be on top 
of stack

Basically, a constructor is just 
a function

Build a standard stack 
frame
Include one extra 
parameter: the newly 
created object

return value

a frame saved FBR

local variables

parameters

saved PC

5

Function Call vs. Constructor Call
Caller:

Push space for ret value
Push arguments
Push/update FBR
Push/update PC

Callee:
Push local variables
Execute callee code
Clear local variables
Pop/restore PC

Caller:
Pop/restore FBR
Clear arguments
(Ret value is left on stack) 

Caller:
Push space for ret value
Push/create object (need size)
Push arguments
Push/update FBR
Push/update PC

Callee:
Push local variables
Execute constructor code
Copy object ref to ret value
Clear local variables
Pop/restore PC

Caller:
Pop/restore FBR
Clear arguments
(Ret value is left on stack)

return value

a frame
saved FBR

local variables

parameters

saved PC

6

Variables
Local variables reside on the stack (just as before)

Location is FBR+offset
Instance variables (i.e., fields) are stored within the object

Location is objectAddress+offset

Code for getting the value of a field
PUSHOFF offsetOfObjectRef // Push address of object
PUSHIMM offsetOfField // Push field’s offset
ADD // Absolute address of field
PUSHIND // Push value stored at that address

Code for setting the value of a field
PUSHOFF offsetOfObjectRef // Push address of object
PUSHIMM offsetOfField // Push field’s offset
ADD // Absolute address of field
PUSHIMM valueToStore // Value to place into field
STOREIND // Store value into address



2

7

Calling a Method
Basically, a method is just a 
function

Build a standard stack 
frame
Include one extra 
parameter: the object

In other words, if the code 
is
a.sum()

then the extra parameter is 
a (actually, the address of 
a)

return value

a frame saved FBR

local variables

parameters

saved PC

8

Function Call vs. Method Call
Caller:

Push space for ret value
Push arguments
Push/update FBR
Push/update PC

Callee:
Push local variables
Execute callee code
Clear local variables
Pop/restore PC

Caller:
Pop/restore FBR
Clear arguments
(Ret value is left on stack) 

Caller:
Push space for ret value
Push object’s address
Push arguments
Push/update FBR
Push/update PC

Callee:
Push local variables
Execute method code
Clear local variables
Pop/restore PC

Caller:
Pop/restore FBR
Clear arguments
Clear object address
(Ret value is left on stack)

return value

a frame
saved FBR

local variables

parameters

saved PC

9

An Object’s Methods
For a method defined within a 
class, we don’t store a copy of 
the method’s code with each
class instance

Instead we can store the 
address of the method’s code

But each instance of a class will 
refer to exactly the same set of 
methods

Thus, it’s wasteful for each 
object to store an address for 
each of its methods

Instead, we use a dispatch vector
A simple table of method 
addresses stored somewhere 
else in the Heap

value of i

value of j

code for sum

code for prod

i

j

sum

prod

Intuitive View of an Object

value of i

value of j

addr of code for sum

addr of code for prod

Data Actually Stored for an Object

addr of dispatch vector

dispatch vector

10

Shared Data for a Class
Instances of the same class 
share the same dispatch vector
This implies that your sam-code 
must create a dispatch vector (in 
the Heap) for each class

If there are static variables (i.e., 
class variables) 

These would be stored in a 
Static Data Area with the 
dispatch vector
There would be one such 
Static Data Area for each 
class
We don’t have static variables 
in Bali

a = new A(4, 8); 
b = new A(7, 0);
c = new A(5, 2);

…

…

…

…
Stack

a

b

c

Program Code

code of 
A.sum

code of 
A.prod

Heap

dispatch vector for A

4
8

7
0

5
2

11

What Info is Needed to Generate Code?

For a local variable
Offset from FBR

For a field
Address of object
Offset of field from start of 
object

For a method
Address of object

From this, you can derive 
address of dispatch 
vector

Offset of method from start 
of dispatch vector

All of this offset information is 
stored in the Symbol Table(s) 
(along with type information

For a field or a method
Address of object comes 
from local variable 

Examples: a.i or a.sum()
Or address of object 
comes from hidden “this” 
parameter of method

Examples: i or sum() 
when used within a 
method of A

12

Multiple Symbol Tables
Program Symbol Table

Classes
Where to find class’s 
dispatch vector
Size of corresponding object

Functions & constructors
Signature

May want to build during 
separate pass over the AST

Class Symbol Table
Fields

Type & offset within object
Methods

Signature & return type
Offset within dispatch vector

Private fields and methods 
can be removed from table 
after class has been compiled

Method/Function Symbol Table
Local variables

Type and offset from FBR
Entire table can be deleted 
after compiling the method or 
function



3

13

Inheritance
An object inherits all public
fields and methods of its 
superclass

But the private fields and 
methods still exist

When we create the code for 
a method, we don’t know if we 
are using 

An instance of the class 
itself
Or an instance of some 
subclass

This implies that a subclass 
had better use the same 
offsets as its superclass

Same dispatch vector 
(with any new stuff at the 
end)
Same object layout (with 
any new stuff at the end)

This allows a method’s code 
to still work even though it’s 
dealing with a subclass

Any “new stuff at the end” 
is never accessed by the 
method

14

Inheritance Example
class A {

int i, j;
A (int ii, int jj) {

i = ii; j = jj;
}

int sum () {
return i + j;
}

int prod () {
return i * j;
}

}
class B extends A {

int k;
B (int ii, int jj) {

super(ii, jj);
k = i – j;
}

int diff () {
return k;
}

}

a = new A(4, 8); 
b = new B(7, 2);
x = b.prod(); // Uses A’s code

addr of sum

addr of prod

dispatch vector for A

4
8

7
2

addr of sum

addr of prod

dispatch vector for B

addr of diff

5

a b

15

Overriding vs. Shadowing
In Java, what happens if a 
subclass defines fields or 
methods that exist in the 
superclass?

A method with the same 
signature will override the 
superclass’s method

In other words, an 
instance of the subclass 
should call the new 
method, not the old one

This is done by altering the 
dispatch vector

In the subclass’s dispatch 
vector, the address of the 
new code replaces the 
address of the old code

A field with the same 
name will shadow the 
superclass’s field

In other words, code is 
generated based on the 
object’s declared type

This is done by appending 
the field on the end of the 
object layout (just as if the 
name were completely 
new)

The Symbol Table for the 
subclass knows only 
about the new field

16

Multiple Inheritance
Java (and Bali) allow a class 
to inherit from at most one 
other class

Other languages allow 
multiple inheritance

It becomes difficult to 
make offsets match for 
both the object layout and 
the dispatch vector

dv dv

dv

class C class D

class E extends C, D

p
q

r
s

?
?
?
?


