
1

Week 4
Code Generation

Paul Chew
CS 212 – Spring 2004

2

Recall
We use recursive descent
parsing to go from program
to AST (Abstract Syntax
Tree)

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

Prog(Assign(x,1),Assign(y,1),do(5,Assign(x,*(x,y)),Assign(y,+(y,1))))

Prog

Assign Assign do

x 1 y 1 5 Assign Assign

x *

x y

y +

y 1

3

Recall the Example Grammar
program → { statement } end .

statement → name = expression ;

statement → do expression :
{ statement } end ;

expression → part [(+ | - | * | /) part]

part → (name | number | (expression))

name → (x | y | z)

Notation:
{ } indicates zero or
more occurrences
[] indicates zero or
one occurrence
(| |) indicates
choice

4

Recursion
The grammar drives the
design of the parser

We write a parsing
method for each
nonterminal

Within the method, each
terminal token is
checked; the
nonterminals can take
care of themselves
(via recursive calls)

The AST drives the design
of the code generator

We write a code-
generation method for
each AST node-type

Within the method, we
generate code for the
node; the subtrees can
take care of themselves
(via recursive calls)

5

Code for Expressions
Goal is to leave
expression’s value on top
of the SaM stack

For our example, there are
3 kinds of expression
nodes:

Numbers (e.g., 42)
Variables (e.g., x)

We assume x is at
mem 0, y at mem 1,
and z at mem 2

Operators (e.g., +)

Desired code
Number

PUSHIMM 42
Variable

PUSHOFF 0
Operator

<code for left subtree>
<code for right subtree>
ADD

6

Example Expression Code

PUSHOFF 0
PUSHOFF 0
TIMES
PUSHIMM 8
PUSHOFF 1
SUB
ADD

+

x x

-

8 y

*

2

7

Code For Assignment Statements
Goal is to store the value of
the <expression> into the
<variable> (e.g., y)

We already have the
code to place the
expression’s value on
top of the stack

Desired code
<code for expression>
STOREOFF 1

Example: y = x + 5;

PUSHOFF 0
PUSHIMM 5
ADD
STOREOFF 1

8

Code For Do Statements
This is harder because we
have to maintain a counter
Goal is to

Place do <expression> on
top of stack to act as
counter
If counter has reached
zero we remove counter
from stack and leave the
loop
Generate code for all
<statements> within the
do-statement
Decrement the counter

<code for expression>
loop: DUP
NOT
JUMPC endloop
<code for statements>
PUSHIMM 1
SUB
JUMP loop
endloop: ADDSP -1

Mistake: Code is wrong
if <expression> is
negative

9

Code for a Program
Goal is to

Reserve space for the
three variables (x, y, and
z)
Print the values of the 3
variable at the end of the
program

Note that no one type of AST
node produces much code

The do-statement was the
most complicated
It produced 7 instructions
of its own

ADDSP 3
<code for statements>
WRITE
WRITE
WRITE
STOP

10

Example Program and Resulting Code

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

ADDSP 3
PUSHIMM 1
STOREOFF 0
PUSHIMM 1
STOREOFF 1
PUSHIMM 5

do1: DUP
NOT
JUMPC end1
PUSHOFF 0
PUSHOFF 1
TIMES
STOREOFF 0
PUSHOFF 1
PUSHIMM 1
ADD
STOREOFF 1
PUSHIMM 1
SUB
JUMP do1
end1: ADDSP –1
WRITE
WRITE
WRITE
STOP

11

EBNF
BNF = Backus-Naur Form

A way of representing a
grammar for a
programming language
Originally Backus Normal
Form

Switched at suggestion of
Knuth (partly because not
really a normal form)
Naur was editor of Algol-
60 document which used
BNF

EBNF = Extended BNF
Basically, BNF with some
extra simplifying notation
There is an official
standard, but common to
modify it

Typical constructs
Way to distinguish
between terminals and
nonterminals
{ } for repetition
[] for optional
(| |) for choice

12

Example Grammar Notation: Java
Statement:

Block
if ParExpression Statement [else Statement]
for (ForInitOpt ; [Expression] ; ForUpdateOpt) Statement
while ParExpression Statement
do Statement while ParExpression ;
try Block (Catches | [Catches] finally Block)
switch ParExpression { SwitchBlockStatementGroups }
synchronized ParExpression Block
return [Expression] ;
throw Expression ;
break [Identifier]
continue [Identifier]
;
ExpressionStatement
Identifier : Statement

3

13

Example Grammar Notation: Python
if_stmt ::=

"if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

while_stmt ::=
"while" expression ":" suite

["else" ":" suite]

for_stmt ::=
"for" target_list "in" expression_list
":" suite

["else" ":" suite]

14

Grammar for Bali (Version for Part 2)
program -> mainFunction
mainFunction ->

int main () functionBody
functionBody ->

{ variableDeclaration* }
{ statement* }

type ->int | boolean
variableDeclaration ->

type name (, name)* ;

Nonterminals are shown as
plain, specific terminals are
shown as bold-blue, and
nonspecific terminals are shown
as bold italic
An arrow -> indicates a
production rule.
Parentheses () are used for
grouping.
Asterisk * indicates repetition (0
or more times).
Brackets [] indicate an optional
occurrence.
A vertical bar | indicates choice.

15

Rest of the Grammar for Bali (Part 2)
statement ->name = expression ;
statement -> return [expression] ;
statement -> { statement* }
statement -> if expression

then statement
[else statement]

statement ->
while expression do statement

statement ->
do statement while expression ;

statement -> expression ;
statement -> print expression ;
statement -> ;

expression ->
expPart [binaryOp expPart]

expPart -> integer | true | false
expPart -> readInt ()
expPart ->name
expPart -> (expression)
expPart -> unaryOp expPart
binaryOp ->arithmeticOp |

comparisionOp | booleanOp
arithmeticOp -> + | - | * | / | %
comparisonOp ->

< | > | <= | >= | == | !=
booleanOp -> && | | | | ^
unaryOp -> - | !

