
1

Week 3
More Parsing

Paul Chew
CS 212 – Spring 2004

2

Recall
A language (computer or
human) has

An alphabet
Tokens (i.e., words)
Syntax (i.e., structure)
Semantics

We know the alphabet
The tokens are simple
Syntax??

Syntax can be
described by a Context
Free Grammar
A grammar uses
productions of the form
V → w
V is a single nonterminal
(i.e., it’s not a token)
w is word made from both
terminals (i.e., tokens) and
nonterminals

3

Compiling Overview
Compiling a program

Lexical analysis
Break program into
tokens

Parsing
Analyze token
arrangement
Discover structure

Code generation
Create code

What you’ll be doing
Lexical analysis

This will be given to you
Parsing

Recursive Descent
Parsing
Build an Abstract Syntax
Tree (AST)

Code generation
Use the AST to create
code

4

Building a Parse Tree
Grammars can be used in two
ways

A grammar defines a
language (i.e., the set of
properly structured
sentences)
A grammar can be used to
parse a sentence (thus,
checking if the sentence is
in the language)

For us,
We will give you the
grammar for Bali
The sentence is a Bali
program

You can show a sentence is in
a language by building a
parse tree (much like
diagramming a sentence)
Example: Show that 8+x/5 is a
valid Expression (E) by
building a parse tree

E → T { (‘+’ | ‘-’) E }
T → F { (‘*’ | ‘/ ’) T }
F → (n | w | ‘(‘ E ‘)’)

{ } indicates 0 or more
occurrences

(| |) indicates choice
n is a number
w is a word

5

Tree Terminology
M is the root of this tree
G is the root of the left
subtree of M
B, H, J, N, and S are
leaves
P is the parent of N
M and G are ancestors of
D
P, N, and S are
descendents of W
A collection of trees is
called a ??

M

G W

PJD

NHB S

6

An Extended Example
A simple computer
language
Just 3 variables: x, y, z
Just two statement types:
assignment and do

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

We can invent a grammar
to describe legal programs

We need rules for
building expressions,
statements, and
programs
Context Free Grammars
are just what’s needed
to describe these rules

2

7

The Grammar
program → { statement } end .

statement → name = expression ;

statement → do expression :
{ statement } end ;

expression → part [(+ | - | * | /) part]

part → (name | number | (expression))

name → (x | y | z)

Notation:
{ } indicates zero or
more occurrences
[] indicates zero or
one occurrence
(| |) indicates
choice

What is the parse tree for
the expression
(5 * x) + 3?

8

Abstract Syntax Tree
We can build a parse tree,
but an AST (Abstract
Syntax Tree) is more useful

Idea is to show less
grammar and more
meaning

expression

part

number

5

name

x

part 3

part

number

+

* 3

5 x

Abstract Syntax Tree
Parse Tree

+

*
expression

part

()

9

Designing the AST
We can decide how the
AST should look for each of
our language constructs

x = 1; y = 1;
do 5:

x = x * y;
y = y + 1;
end;

end.

=

x 1

x

=

x

*

y

do

exp s1 sn. . . .

10

Recursive Descent Parsing
Idea: Use the grammar to
design a recursive program
that builds the AST

To parse a do-statement,
for instance

We look for each
terminal (i.e., token)
Each nonterminal (e.g.,
expression, statement)
can handle itself

The grammar tells how to
write the program

public DoNode parseDo {
Make sure there is a “do” token;
exp = parseExpression();
Make sure there is an “:” token;
while (not “end” token) {

s = parseStatement();
stList.add(s);
}

Make sure there is an “end” token;
Make sure there is a “;” token;
return DoNode(exp, stList);

11

In Practice
We define a parent class
ASTNode

DoStatement can be a
subclass

The parseDo program
can be used as the
outline for the
constructor

Each possible node in the
AST will have its own
subclass of ASTNode

Some of the grammar’s
nonterminals don’t correspond
to nodes in the AST

E.g., statement,
expression, part
For these we don’t want to
create classes
But we do need recursive
methods for these
nonterminals

One place to put such
methods:

In the parent class
(ASTNode)

12

Does Recursive Descent Always Work?

There are some grammars
that cannot be used as the
basis for recursive descent

A trivial example
(causes infinite
recursion):

S -> b
S -> Sa

Can rewrite grammar
S -> b
S -> bA
A -> aA

For some constructs
Recursive Descent is hard
to use

Can use a more
powerful parsing
technique (there are
several, but not in this
course)

3

13

Syntactic Ambiguity
Sometimes a sentence has
more than one parse tree

S → A | aaB
A → ε | aAb
B → ε | aB | bB

The string aabb can be
parsed in two ways

This kind of ambiguity
sometimes shows up in
programming languages

if E1 then if E2 then S1 else S2

This ambiguity actually affects
the program’s meaning
How do we resolve this?

Provide an extra non-
grammar rule (e.g., the
else goes with the closest
if)
Modify the grammar (e.g.,
an if-statement must end
with a ‘fi’)
Other methods (e.g.,
Python uses amount of
indentation)

We try to avoid syntactic
ambiguity in Bali

14

Code Generation
The same kind of recursive
viewpoint can drive our
code generation

This time we recurse on
the AST instead of the
grammar

Write the code for the
root node; the subtrees
(e.g., exp) can take care
of themselves

class AssignmentStatement extends
ASTNode {

String var; ASTNode exp;

public AssignmentStatement {
var = variable on left;
exp = expression on right;
}

public void generate () {
exp.generate();
// Exp result is left on stack
Generate code to move top

of stack into mem
location of var;

} }

