Week 2

Lexical Analysis and Parsing

Paul Chew
CS 212 - Spring 2004

Recall

= Compiling Java

Java Program

Java Compiler

JVM Interpreter

m Compiling Bali

Bali Program

Bali Compiler
(you write this)

Sam-Code

SaM Simulator

Compilers
m Basically, a compiler = Typical compiler phases
e translates one language e Lexical analysis
(e.g., Java) « Breaking input into tokens

o into another
(e.g., JBC: Java Byte Code)

= Why do this?

o |dea is to translate a
language that is easy for
humans to understand into
one that is easy for a
computer to understand
This idea was initially
controversial!

e Parsing
« Understanding program’s
structure
e Code Generation
« Creating code in a
simpler language (e.g.,
JBC)
e Optimization
« Making the code more
efficient (e.g.,
precomputing constant
expressions, avoid
recomputing)

Parts of a Language

= Human language

e alphabet — words — sentences — paragraphs —

chapters — book
m Computer language

e alphabet — tokens — statements — program

m Both types of language have
e Syntax
« Structural rules
e Semantics
« Meaning

Syntax

= Remember diagramming sentences? This was syntax!
sentence — noun-phrase verb-phrase
noun-phrase — article [adjective] noun

verb-phrase — verb direct-object
direct-object — noun-phrase
= The hungry mouse ate the cheese.

article adjective noun verb article

noun

W noun-phrase
\

noun-phrase

verb-phrase

sentence

direct-object

The shiny elbow drank the automobile.

Syntax vs. Semantics

m Syntax = structure [
Semantics = meaning

m Legal syntax does not imply
valid meaning n

m Examples of semantic rules
for a programming language u

e Variables must be
declared before use

o Division by zero causes an
error

o The then-clause is
executed only if the if-
expression is True

It's relatively easy to define
valid syntax (especially if we
get to invent the language)
It's harder to specify
semantics

How can we specify
semantics?
e Formally, using logic
(axiomatic semantics)
o Informally, using
explanations in English
o By reference to a
canonical implementation

Compiling Overview

= Compiling a program
o Lexical analysis

« Break program into
tokens

e Parsing
« Analyze token
arrangement
« Discover structure
o Code generation
« Create code

m For a computer language,
each phase can be completed
before the next one begins

= Understanding a sentence
e Lexical analysis
« Break sentence into
words
e Parsing
« Analyze word
arrangement
« Discover structure
o Understanding
« Understand the sentence

= For human language, there is
feedback between parsing
and understanding

Lexical Analysis

= Goal: divide program into
tokens

m Tokens

o Individual units or words of
a language
Smallest element in a
language that conveys
meaning
Examples: operators,
names, strings, keywords,
numbers

= Tokens can be specified using
regular expressions

a* = repeat a zero or more times
a* = repeat a one or more times
[abc] = choose one of a, b, or ¢
? = matches any one character

m Examples

e operator=[+-%/]
o integer = [0123456789]*

= For Bali, we give you the
lexical analyzer (or tokenizer)

Building a Tokenizer

m For tokens, can tell what to
do next by checking a few
characters (usually 1
character) ahead

o Example: If it starts with

a letter, it's a word; the

word ends when you

reach a non-
alphanumeric character

Example: If it starts with

a digit, it's a number; if

you reach a decimal

point, it's a floating point
number,...

m Java has a class

java.io.StreamTokenizer

e Can recognize

identifiers, numbers,
quoted strings, and
various comment styles
Strangely, it can’t
recognize a number in
scientific notation
(6.02E23)

m Early computer languages
were not parsed based on
tokens

Specifying Syntax

m How do we specify syntax?
o Can use a grammar
o Can use a syntax chart

m Example grammar (anything
in single-quotes is a token; n
and w represent a number
token and a word token,
respectively; parentheses are
used for grouping; | indicates
choice; brackets indicate
optional)

« EST(W]%)E]
e THF[(%|7")T]
e Fon|w|(EY

m Example syntax charts
(anything in a rounded box is
a token)

Grammars

m The rules in a grammar are
called productions
m Syntax rules can be
specified using a Context
Free Grammar
o All productions are of
the formV - w
e Vis a single nonterminal
(i.e., it's not a token)
e wis word made from
terminals (i.e., tokens) and
nonterminals

m In simple examples,
uppercase is used for
nonterminals, lowercase for
terminals

m Example (¢ represents the
empty string):

A->ce
A — aAb

m A grammar defines a

language

e Language of example:
all strings of the form
a"b"forn>0

m CS 381 for more detail

Building a Parse Tree

m Grammars can be used in
two ways
e A grammar defines a
language
e A grammar can be used
to parse a sentence
(thus, checking if the
sentence is in the
language)
e Forus,
« We will give you the
grammar for Bali
« The sentence is a Bali
program

m You can show a sentence
is in a language by building
a parse tree (much like
diagramming a sentence)

m Example: Show that 8+x/5
is a valid Expression (E) by
building a parse tree

e E-T(]-)E]
e THF[(¥]7")T]
e Fon|wl|(EY)

Tree Terminology

m M is the root of this tree

m G is the root of the left
subtree of M 0

m B, H,J,N,and S are
leaves e @
m P is the parent of N

m M and G are ancestors of
: ® © ¢
m P,N,and S are

descendents of W e 0 o e

m A collection of trees is
called a ??

Syntactic Ambiguity

m Sometimes a sentence has = This ambiguity actually affects
more than one parse tree the program’s meaning
S > A|aaB m How do we resolve this?
A—e|aAb o Provide an extra non-
B—¢|aB|bB grammar rule (e.g., the
e The string aabb can be else goes with the closest
parsed in two ways if)
o Modify the grammar (e.g.,
= This kind of ambiguity an if-statement must end
sometimes shows up in with a “ff’)

Other methods (e.g.,

Python uses amount of

indentation)

m We try to avoid syntactic
ambiguity in Bali

programming languages

if E1 then if E2 then S1 else S2

