
1

Week 2
Lexical Analysis and Parsing

Paul Chew
CS 212 – Spring 2004

2

Recall
Compiling Java Compiling Bali

Java Program

Java Compiler

Java Byte Code
(JBC)

JVM Interpreter

Bali Program

Bali Compiler
(you write this)

Sam-Code

SaM Simulator

3

Compilers
Basically, a compiler

translates one language
(e.g., Java)
into another
(e.g., JBC: Java Byte Code)

Why do this?
Idea is to translate a
language that is easy for
humans to understand into
one that is easy for a
computer to understand
This idea was initially
controversial!

Typical compiler phases
Lexical analysis

Breaking input into tokens
Parsing

Understanding program’s
structure

Code Generation
Creating code in a
simpler language (e.g.,
JBC)

Optimization
Making the code more
efficient (e.g.,
precomputing constant
expressions, avoid
recomputing)

4

Parts of a Language
Human language

alphabet → words → sentences → paragraphs →
chapters → book

Computer language
alphabet → tokens → statements → program

Both types of language have
Syntax

Structural rules
Semantics

Meaning

5

Syntax
Remember diagramming sentences? This was syntax!
sentence → noun-phrase verb-phrase
noun-phrase → article [adjective] noun
verb-phrase → verb direct-object
direct-object → noun-phrase

The hungry mouse ate the cheese.

article adjective noun verb article noun

noun-phrase

noun-phrase

direct-object

verb-phrase

sentence

The shiny elbow drank the automobile.

6

Syntax vs. Semantics
Syntax = structure
Semantics = meaning
Legal syntax does not imply
valid meaning

Examples of semantic rules
for a programming language

Variables must be
declared before use
Division by zero causes an
error
The then-clause is
executed only if the if-
expression is True

It’s relatively easy to define
valid syntax (especially if we
get to invent the language)
It’s harder to specify
semantics

How can we specify
semantics?

Formally, using logic
(axiomatic semantics)
Informally, using
explanations in English
By reference to a
canonical implementation

2

7

Compiling Overview
Compiling a program

Lexical analysis
Break program into
tokens

Parsing
Analyze token
arrangement
Discover structure

Code generation
Create code

For a computer language,
each phase can be completed
before the next one begins

Understanding a sentence
Lexical analysis

Break sentence into
words

Parsing
Analyze word
arrangement
Discover structure

Understanding
Understand the sentence

For human language, there is
feedback between parsing
and understanding

8

Lexical Analysis
Goal: divide program into
tokens

Tokens
Individual units or words of
a language
Smallest element in a
language that conveys
meaning
Examples: operators,
names, strings, keywords,
numbers

Tokens can be specified using
regular expressions

a* = repeat a zero or more times
a+ = repeat a one or more times
[abc] = choose one of a, b, or c
? = matches any one character

Examples

operator = [+ - * /]
integer = [0123456789]+

For Bali, we give you the
lexical analyzer (or tokenizer)

9

Building a Tokenizer
For tokens, can tell what to
do next by checking a few
characters (usually 1
character) ahead

Example: If it starts with
a letter, it’s a word; the
word ends when you
reach a non-
alphanumeric character
Example: If it starts with
a digit, it’s a number; if
you reach a decimal
point, it’s a floating point
number,…

Java has a class
java.io.StreamTokenizer

Can recognize
identifiers, numbers,
quoted strings, and
various comment styles
Strangely, it can’t
recognize a number in
scientific notation
(6.02E23)

Early computer languages
were not parsed based on
tokens

10

Specifying Syntax
How do we specify syntax?

Can use a grammar
Can use a syntax chart

Example grammar (anything
in single-quotes is a token; n
and w represent a number
token and a word token,
respectively; parentheses are
used for grouping; | indicates
choice; brackets indicate
optional)

E → T [(‘+’ | ‘-’) E]
T → F [(‘*’ | ‘/ ’) T]
F → n | w | ‘(‘ E ‘)’

Example syntax charts
(anything in a rounded box is
a token)

E

T

T

+ -

F

F

* /

()

n

w

E:

T:

F:

11

Grammars
The rules in a grammar are
called productions
Syntax rules can be
specified using a Context
Free Grammar

All productions are of
the form V → w
V is a single nonterminal
(i.e., it’s not a token)
w is word made from
terminals (i.e., tokens) and
nonterminals

In simple examples,
uppercase is used for
nonterminals, lowercase for
terminals
Example (ε represents the
empty string):

A → ε
A → aAb

A grammar defines a
language

Language of example:
all strings of the form
anbn for n > 0

CS 381 for more detail
12

Building a Parse Tree
Grammars can be used in
two ways

A grammar defines a
language
A grammar can be used
to parse a sentence
(thus, checking if the
sentence is in the
language)
For us,

We will give you the
grammar for Bali
The sentence is a Bali
program

You can show a sentence
is in a language by building
a parse tree (much like
diagramming a sentence)

Example: Show that 8+x/5
is a valid Expression (E) by
building a parse tree

E → T [(‘+’ | ‘-’) E]
T → F [(‘*’ | ‘/ ’) T]
F → n | w | ‘(‘ E ‘)’

3

13

Tree Terminology
M is the root of this tree
G is the root of the left
subtree of M
B, H, J, N, and S are
leaves
P is the parent of N
M and G are ancestors of
D
P, N, and S are
descendents of W
A collection of trees is
called a ??

M

G W

PJD

NHB S

14

Syntactic Ambiguity
Sometimes a sentence has
more than one parse tree

S → A | aaB
A → ε | aAb
B → ε | aB | bB

The string aabb can be
parsed in two ways

This kind of ambiguity
sometimes shows up in
programming languages

if E1 then if E2 then S1 else S2

This ambiguity actually affects
the program’s meaning
How do we resolve this?

Provide an extra non-
grammar rule (e.g., the
else goes with the closest
if)
Modify the grammar (e.g.,
an if-statement must end
with a ‘fi’)
Other methods (e.g.,
Python uses amount of
indentation)

We try to avoid syntactic
ambiguity in Bali

