
CS2112—Fall 2014
Assignment 4

Parsing and Fault Injection
Due: Thursday, October 16, 11:59pm

Design Overview due: Wednesday, October 8, 11:59pm

This assignment requires you to build a parser for a simple language, a pretty-printer that can
print out parsed programs in a nice format, and a fault injector that mutates these parsed programs
into other legal program representations.

0 Changes

• October 8: One of the “invalid rules” was actually valid.
• October 6: Clarified restrictions.

1 Instructions

1.1 Grading

Solutions will be graded on design, correctness, and style. A good design makes the implementa-
tion easy to understand and maximizes code sharing. A correct program compiles without errors or
warnings, and behaves according the requirements given here. A program with good style is clear,
concise, and easy to read.

A few suggestions regarding good style may be helpful. You should use brief but mnemonic
variable names and proper indentation. Keep your code within an 80-character width. Methods
should be accompanied by Javadoc-compliant specifications, and class invariants should be docu-
mented. Other comments may be included to explain nonobvious implementation details.

1.2 Final project

This assignment is the first part of the final project for the course. Read the Project Specification to
find out more about the final project and the language you will be working with in this assignment.
The faults to be injected correspond to the mutations in Section 10 of the Project Specification.

1.3 Partners

You will work in a group of two students for this assignment. Find your partner as soon as possible,
and set up your group on CMS so we know who has a partner and who does not. Piazza also has
support for soliciting partners. If you are having trouble finding a partner, ask the course staff, and
we will try to pair you up with someone in a fair way.

Remember that the course staff is happy to help with problems you run into. Read all Piazza
posts and ask questions that have not been addressed, attend office hours, or set up meetings with
any course staff member for help.

CS2112 Fall 2014 1/8 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2014fa/project/project.pdf

1.4 Restrictions

Use of any standard Java libraries from the Java SDK is permitted. Use of a parser generator (e.g.,
CUP) is prohibited, however.

The existing class hierarchy, method signatures, and specifications of ast.Mutation, ast.MutationFactory,
ast.Node, ast.Program, parse.Parser, and parse.ParserFactory may not be altered. Ad-
ditions to these files are allowed as long as they do not break the existing structures.

2 Design overview document

Starting with this assignment, we expect your group to submit an overview document. The Overview
Document Specification outlines our expectations. Writing a clear document with good use of lan-
guage is important.

We require that you submit an early draft of your design overview document in advance before
the assignment due date. Your design and testing strategy might not be complete at that point, but
we would like to see your progress. Feedback on this draft will be given within 72 hours after the
overview is due.

These are key topics to include in your design overview document:

• Have you thought about the key data structures in this assignment? In particular, having a reason-
able AST design early on will be important for success. The need to support both pretty-printing
and mutation will create some design challenges.
• Have you thought through the key algorithms and identified what will be challenging to imple-

ment?
• Have you thought about your implementation strategy and how you will go about dividing re-

sponsibilities between the group members?
• Do you have a testing strategy that covers the possible inputs and the different kinds of function-

ality you are implementing?

3 Version control

Working with a partner effectively is a key learning goal for this project. To facilitate this goal,
we would like you to use version control in managing your partnership. You may choose to use
any system you like; common industry standards include Git, Subversion, and Mercurial. At least
one of these systems will be covered in lab. You must submit file log.txt that lists your commit
history from your group. This is not extra work, as version control systems already provide this
functionality. While it may require some learning, using version control is a valuable skill to have.
In the short term, you will reap the benefits as you delve further into the final project. In the long
run, any large piece of modern software is always managed with version control.

CS2112 Fall 2014 2/8 Assignment 4

http://www.cs.cornell.edu/courses/cs2112/2014fa/hw/overview-requirements.html
http://www.cs.cornell.edu/courses/cs2112/2014fa/hw/overview-requirements.html

2

+

*

3 4

abstract syntax tree parse tree

expr

term term+

number(2)

number(4)

factor * factor

number(3)

factor

(
expr

)

term
BinaryOp(+)

Num(2) BinaryOp(*)

Num(3) Num(4)

factor

Figure 1: Abstract and concrete syntax trees for 2+(3*4)

4 Parsing

Parsing involves converting an input sequence of text, such as a program, into a tree structure
according to a grammar. The Java compiler, for example, is a parser that converts programs you
write into an executable form. You will apply this same idea to parsing a program written in a critter
language into an internal abstract syntax tree representation that your program can understand,
execute, and modify.

The grammar for a language describes the concrete syntax of programs, including all the tokens
that are part of the input. Rather than to construct the concrete syntax tree, the job of the parser is
to build an abstract syntax tree.

4.1 Abstract syntax trees

An abstract syntax tree (AST) represents the given input without parts that do not affect its mean-
ing, inherent in the structure of the AST. As a result, different inputs that have the same meaning
will have an identical AST. For example, the expressions (2+3*4), 2+(3*4), and (2) + (3)*(4)
have the same abstract syntax tree, because parentheses are only there to guide the construction of
the tree. Figure 1 shows this abstract syntax tree along with the concrete syntax tree (parse tree) for
2+(3*4). The AST is shown on the left in two different forms: the top represents how we might

CS2112 Fall 2014 3/8 Assignment 4

Valid Invalid
Rules:

1 > 0 --> mem[0] := 10

mem[1] := 4

mem[5] := 3;

1 > 0 --> mem[0] := 10

mem[1] := 4

mem[5] := 3

wait;

Conditions:

1 > 2 and { 3 <= 4 or 5 = 6 }

Expressions:

(1 + 2) * 3

Rules:
1 > 0 --> mem[0] := 1

forward

attack;

(Two actions instead of one.)

Conditions:
1 > 2 and (3 <= 4 or 5 = 6)

(Curly braces should be used.)
mem[1] > 3 { or mem[2] < 4 }

(or should be before {.)

Expressions:
{ 1 + 2 } * 3

(Parentheses should be used.)

Table 1: Examples of valid and invalid critter terms

think of the AST, while the bottom corresponds more closely to the code and might help with your
AST implementation.

The abstract syntax tree omits any syntax that is unnecessary, which makes it different from
a concrete syntax tree (parse tree). This distinction becomes critically important when you imple-
ment fault injection. Fault injection will be much more difficult if your abstract syntax tree has
concrete parse tree nodes such as parentheses, or nonterminals that exist only to represent different
levels of precedence.

You will need to design and implement a class hierarchy to represent this tree, in which element
types are subclasses of Node. By giving Node appropriate methods, various useful functionality, in-
cluding fault injection in this assignment and evaluation in a later assignment, can be implemented
recursively.

4.2 Critter grammar

The grammar for the language to be parsed is given in the Project Specification. Please see the
course staff in office hours or use Piazza if you have any question about the grammar.

Table 1 shows several valid and invalid terms in the critter language. An example of a valid
critter program can be found in the Project Specification.

CS2112 Fall 2014 4/8 Assignment 4

4.3 Implementation

AST interfaces and some AST classes are provided to help you with defining your AST. You will
need to add more data structures to represent the entire critter language. A skeleton of ParserImpl
an implementation of Parser, is also provided as a guideline and can be used in the ParserFactory.
Finally, a nearly complete implementation of a Tokenizer is given; however, you will find that
it does not support Java-style “//” comments that extend to the end of a line in critter programs,
such as

POSTURE != 17 --> POSTURE := 17; // we are species 17!

Extend Tokenizer to handle this comment syntax and help critters understand themselves more
easily.

5 Fault injection

Compilers operate on source code to produce compiled code. Bug finders operate on source code
to produce lists of possible bugs detected. Testing such software requires a lot of programs as test
cases, but writing a lot of programs is expensive. Fault injection is a cost-effective technique for
generating many programs as test cases. The idea is to make small random changes to a valid
program to produce many useful test cases.

Compiler testing requires not only test cases that are valid programs in the programming lan-
guage, but also ones that are invalid programs. Finding bugs, on the other hand, requires test cases
that are valid programs containing bugs. In this assignment, you will build the latter kind of fault
injector, in which a valid program is transformed into another valid program. For the final project,
mutations on the behavior of a simulated critter can be implemented using fault injection. The
Project Specification defines possible kinds of genome mutations.

5.1 Examples

The critter programs in the example directory demonstrate several steps of mutating a critter.
Program mutated critter 1 is a result of mutating program unmutated critter with Rule 1.
Program mutated critter 2 is a result of mutating mutated critter 1 with Rule 2, and sim-
ilarly for the remaining programs in the sequence.

5.2 Implementation

Some flexibility exists in how to interpret the mutation rules. Identify any ambiguities you see and
explain how you have resolved them. One rule of thumb is that it should be possible to change a
valid critter program into any other valid program through some sequence of mutations.

There are many different kinds of nodes in the AST. Implementing mutation for each of them
could involve a lot of tedious code and opportunities for mistakes. Think about how to abstract the
various kind of mutations so that you can share mutation code across multiple node types. Can you

CS2112 Fall 2014 5/8 Assignment 4

create a common framework so that most mutation types can be implemented in a common way,
rather than creating complex logic specific to each combination of node type and mutation type?
You have a lot of flexibility on how to implement this.

6 Pretty-printing

You should be able to print out programs in the same syntax they were written in. That is, the
printed programs should yield the same abstract syntax tree when parsed again. Pretty-printing
should use indentation and line breaks to make output readable and, well, pretty.

7 User interface

Your program must be able to be run from the command line as follows:

• java -jar <your jar> <input file>
Parse the file input file as a critter program and pretty-print the program to standard output
if the program is valid.
• java -jar <your jar> --mutate <n> <input file>

Parse the file input file as a critter program and apply n mutations if the program is valid.
After each mutation, print a description of the kind of mutation applied and pretty-print the
resulting program.

8 Written problems

Wandering through Mirkwood, Bilbo and the dwarves fall into an Elvish oubliette deep in the
ground. In the dim light filtering in from the forest above, Bilbo searches for a way to escape the
prison.

1. A small, apparently dead tree sprouts from the dirt. However, Bilbo discovers that by chanting
the even natural numbers starting from 0 (0, 2, 4, . . .) as he touches the nodes of this magical
tree, he is able to make it come back to life and grow into a tree they can use to climb their way
out. However, it only works if the numbers assigned to each node respect the binary search tree
invariant. Show where on the tree Bilbo places each number. (The root is drawn at the top, as
usual.)

CS2112 Fall 2014 6/8 Assignment 4

2. The tree can only be climbed successfully by doing a preorder traversal of its nodes. Report the
order in which the nodes are visited.

3. Bilbo can almost climb out but the tree is too short and unbalanced. He needs to add nodes for
the numbers 5 and 15 to the binary search tree. Draw the resulting tree after the new nodes are
inserted.

9 Overview of tasks

Determine with your partner how to break up the work involved in this assignment. Here is a list
of the major tasks involved:

• Altering Tokenizer to support end-of-line comments
• Implementing the main method and command-line interface.
• Designing and implementing a class hierarchy for representing abstract syntax trees.
• Implementing interface Parser to generate abstract syntax trees.
• Implementing pretty-printing functionality as methods on AST nodes.
• Implementing a class or classes to perform fault injection.
• Solving the written problems.

10

questions do not affect your raw score for any assignment. They are given as interesting
problems that present a challenge.

4. In the code below, let a be an array of integers. Show that the code satisfies the given loop
invariants. What does the Postcondition part of the loop invariant argument tell you about what
the code does?

1 int sum = 0, max = 0;

2 for (int i = 0; i < a.length; i++) {
3 sum += a[i];

4 if (sum < 0)
5 sum = 0;

6 if (sum > max)
7 max = sum;

8 }

Invariants:

0 ≤ i ≤ a.length (1)

sum = max
0≤k≤i

 i−1∑
j=k

a[j]

 (2)

max = max
0≤k≤i

max
0≤ j≤k

 k−1∑
`= j

a[`]


 (3)

Assume that the empty summation is zero.

:

CS2112 Fall 2014 7/8 Assignment 4

11 Tips

The key to success on this assignment is for both partners to contribute effectively. Working with
a partner, however, may add challenges. Some tips:

• Meet with your partner as early as possible to work out the design and to discuss the responsi-
bilities for the assignment. Keep meeting and talking as the project progresses. Be prepared for
your meetings. Be ready to present proposals to your partner for what to do, and to explain the
work you have done. Good communication is essential.
• One way to partition an assignment into parts that can be worked on separately is to agree on,

first, what the different modules will be, and further, exactly what their interfaces are, including
detailed specifications.
• Drop by office hours and explain your design to a member of the course staff as early as possible.

This will help you avoid big design errors that will cost you as you try to implement.
• This project is a great opportunity to try out pair programming, in which you program in a

pilot/copilot mode. It can be more fun and tends to result in fewer bugs. A key ingredient is to
have the pilot/typist convince the other person that the code meets the predefined spec. It might
be tempting to let the pilot/typist be the person who is more confident on how to implement the
code, but you will probably be more successful if you do the reverse.
• This project is also a great time for code reviews with your partner. Walk through your code and

explain to your partner what you have done, and convince your partner your design is good. Be
ready to give and to accept constructive criticism!
• Sometimes people feel that they are working much harder than their partner. Remember that

when you go to implement something, it tends to take about twice as long as you thought it
would. So what your partner is doing is also twice as hard as it looks. If you think you are
working twice as hard as your partner, you two are probably about even!

12 Submission

You should submit these items on CMS:

• overview.txt/pdf: Your final overview document for the assignment.
• A zip file containing these items:

– Source code: You should include all source code required to compile and run the project. All
source code should reside in the src directory with an appropriate package structure.

– Tests: You should include code for all your test cases, in a package named tests, separate
from the rest of your source code. Subpackages are permitted.

Do not include any files ending in .class.
• log.txt: A dump of your commit log from the version control system of your choice.
• written problems.txt/pdf: This file should include your response to the written problems.

CS2112 Fall 2014 8/8 Assignment 4

	Changes
	Instructions
	Grading
	Final project
	Partners
	Restrictions

	Design overview document
	Version control
	Parsing
	Abstract syntax trees
	Critter grammar
	Implementation

	Fault injection
	Examples
	Implementation

	Pretty-printing
	User interface
	Written problems
	Overview of tasks
	Karma
	Tips
	Submission

