

## Announcements

Final is optional! As soon as we grade A7 and get it into the CMS, we determine tentative course grades.

You will complete "assignment" Accept course grade? on the CMS by Wednesday night.

If you accept it, that IS your grade. It won't change.
Don't accept it? Take final. Can lower and well as raise grade.

More past finals are now on Exams page of course website. Not all answers yet.

## Announcements

A7: NO LATE DAYS. No need to put in time and comments. We have to grade quickly. No regrade requests for A7. Grade based only on your score on a bunch of sewer systems.

Please check submission guidelines carefully. Every mistake you make in submitting $A 7$ slows down grading of A7 and consequent delay of publishing tentative course grades.

## Announcements

Course evaluation: Completing it is part of your course assignment. Worth $1 \%$ of grade.
Must be completed by Saturday night. 1 DEC
We then get a file that says who completed the evaluation.
We do not see your evaluations until after we submit grades to to the Cornell system.
We never see names associated with evaluations.


Fibonacci function (year 1202)

```
fib(0) = 0
fib}(1)=
fib}(n)=fib(n-1)+fib(n-2) for n\geq2
/** Return fib(n). Precondition: n \geq0.*/
public static int f(int n) {
    if ( }\textrm{n}<=1\mathrm{ ) return n;
    return f(n-1)+f(n-2);
}
0,1,1,2,3,5,8,13,21,34,55
```

We'll see that this is a lousy way to compute $\mathrm{f}(\mathrm{n})$

Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \ldots$

Divide a line into two parts:
Call long part a and short part b

$$
\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\hline
\end{array}
$$

$(a+b) / a=a / b$


See webpage:
http://www.mathsisfun.com/numbers/golden-ratio.html

Fibonacci function (year 1202)

Downloaded from wikipedia

$0,1,1,2,3,5,8,13,21,34 \ldots$

Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \ldots$

Find the golden ratio when we divide a line into two parts a and $b$ such that
$(a+b) / a=a / b$

$$
\begin{aligned}
& =\Phi \\
& \begin{array}{|l|}
\hline a / b \\
8 / 5=1.6 \\
13 / 8=1.625 \ldots \\
21 / 13=1.615 \ldots \\
34 / 21=1.619 \ldots \\
55 / 34=1.617 \ldots
\end{array}
\end{aligned}
$$

## Golden

 rectangle

For successive Fibonacci numbers $\mathrm{a}, \mathrm{b}, \mathrm{a} / \mathrm{b}$ is close to $\Phi$ but not quite it $\Phi .0,1,1,2,3,5,8,13,21,34,55, \ldots$
Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \ldots$

$$
\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \ldots
$$

$0,1,1,2,3,5,8,13,21,34,55$
$\mathrm{fib}(\mathrm{n}) / \mathrm{fib}(\mathrm{n}-1)$ is close to $\Phi$.
So $\Phi * \mathrm{fib}(\mathrm{n}-1)$ is close to $\mathrm{fib}(\mathrm{n})$
Use formula to calculate fib(n) from fib(n-1)
In fact,

| $\mathrm{a} / \mathrm{b}$ |
| :--- |
| $8 / 5=1.6$ |
| $13 / 8=1.625 \ldots$ |
| $21 / 13=1.615 \ldots$ |
| $34 / 21=1.619 \ldots$ |
| $55 / 34=1.617 \ldots$ |

limit $\mathrm{f}(\mathrm{n}) / \mathrm{fib}(\mathrm{n}-1)=\varnothing$
$n->\infty$

Golden ratio and Fibonacci numbers: inextricably linked

Fibonacci, golden ratio, golden angle
$0,1,1,2,3,5,8,13,21,34,55$
limit $f(n) / f i b(n-1)=$ golden ratio $=1.6180339887 \ldots$
n $->\infty$
$360 / 1.6180339887 \ldots=222.492235 \ldots$
$360-222.492235 \ldots=137.5077$ golden angle




## Uses of Fibonacci sequence in CS

## Fibonacci search

## Fibonacci heap data strcture

Fibonacci cubes: graphs used for interconnecting parallel and distributed systems

Fibonacci search of sorted b[0..n-1]
$\qquad$ e1 $\qquad$ e1

## Fibonacci search history

David Ferguson. Fibonaccian searching. Communications of the ACM, 3(12) 1960: 648
Wiki: Fibonacci search divides the array into two parts that have sizes that are consecutive Fibonacci numbers. On average, this leads to about $4 \%$ more comparisons to be executed, but only one addition and subtraction is needed to calculate the indices of the accessed array elements, while classical binary search needs bit-shift, division or multiplication.

If the data is stored on a magnetic tape where seek time depends on the current head position, a tradeoff between longer seek time and more comparisons may lead to a search algorithm that is skewed similarly to Fibonacci search.



| Recursion for fib: $f(n)=f(n-1)+f(n-2)$ |  |
| :---: | :---: |
|  |  |
| $\mathrm{T}(0)=\mathrm{a}$ | $\mathrm{T}(\mathrm{n})<=\mathrm{c} * 2^{\mathrm{n}}$ for $\mathrm{n}>=\mathrm{N}$ |
| $T(1)=a$ | T(3) |
| $T(n)=T(n-1)+T(n-2)$ | $\begin{array}{lc} = & <\text { Definition }> \\ & a+T(2)+\mathrm{T}(1) \\ \leq & <\text { look to the left> }> \end{array}$ |
| $\begin{aligned} & \mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0} \\ & \mathrm{~T}(1)=\mathrm{a} \leq \mathrm{a} * 2^{1} \end{aligned}$ | $=\begin{aligned} & a+a * 2^{2}+a * 2^{1} \\ & <\text { arithmetic }> \\ & a *(7) \end{aligned}$ |
| $\mathrm{T}(2)=2 \mathrm{a} \leq \mathrm{a} * 2^{2}$ | $\begin{gathered} \leq \quad<\text { arithmetic }> \\ a * 2^{3} \end{gathered}$ |

$$
\text { Recursion for fib: } f(n)=f(n-1)+f(n-2)
$$

$T(0)=a$
$T(1)=a$
$T(n)=T(n-1)+T(n-2)$
$\mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0}$
$T(1)=a \leq a * 2^{1}$
$\mathrm{T}(2) \leq \mathrm{a} * 2^{2}$
$T(3) \leq a * 2^{3}$
$T(4) \leq a * 2^{4}$
WE CAN GO ON FOREVER LIKE THIS




Linear algorithm to calculate fib(n)

```
/** Return fib(n), for n >= 0. */
public static int f(int n) {
    if ( }\textrm{n}<=1\mathrm{ ) return 1;
    int p=0; int c= 1; int i=2;
    // invariant: p = fib(i-2) and c= fib(i-1)
    while (i<n) {
        int fibi=c+p;p=c; c= fibi;
        i=i+1;
    }
    return c + p;
}
```


## Logarithmic algorithm!

$f_{0}=0$
$f_{1}=1$
$f_{n+2}=f_{n+1}+f_{n}$
$\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{k}\left[\begin{array}{l}f_{n} \\ f_{n+1}\end{array}\right)=\binom{f_{n+k}}{f_{n+k+1}}$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]^{k}\left[\begin{array}{l}f_{0} \\ f_{1}\end{array}\right]=\left[\begin{array}{l}f_{k} \\ f_{k+1}\end{array}\right)$
You know a logarithmic algorithm for exponentiation -recursive and iterative versions

[^0]
## Logarithmic algorithm!

## Caching

/** For $0 \leq \mathrm{n}<$ cache.size, fib(n) is cache[n]

* If fibCached(k) has been called, its result in in cache[k] */ public static ArrayList<Integer> cache $=$ new ArrayList $>($ );

$$
\begin{aligned}
& \text { /** Return fibonacci(n). Pre: } \mathrm{n}>=0 \text {. Use the cache. */ } \\
& \text { public static int fibCached(int } \mathrm{n})\{ \\
& \text { if }(\mathrm{n}<\text { cache.size()) return cache.get(n); } \\
& \text { if }(\mathrm{n}=0)\{\operatorname{cache} . \operatorname{add}(0) ; \text { return } 0 ;\} \\
& \text { if }(\mathrm{n}=1)\{\operatorname{cache} . \operatorname{add}(1) ; \text { return } 1 ;\} \\
& \\
& \text { int ans= fibCached(n-2) }\} \text { fibCached(n-1); } \\
& \text { cache.add(ans); } \\
& \text { return ans; } \\
& \}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{f}_{0}=0 \\
& \mathrm{f}_{1}=1 \\
& f_{n+2}=f_{n+1}+f_{n} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
f_{n} \\
f_{n+1}
\end{array}\right)=\binom{f_{n+1}}{f_{n+2}} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
f_{n} \\
f_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
f_{n+1} \\
f_{n+2}
\end{array}\right]=\left(\begin{array}{c}
f_{n+2} \\
f_{n+3}
\end{array}\right] \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{k}\left[\begin{array}{l}
f_{n} \\
f_{n+1}
\end{array}\right)=\binom{f_{n+k}}{f_{n+k+1}} \\
& \mathrm{f}_{0}=0 \\
& f_{1}=1 \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
f_{n} \\
f_{n+1}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{f_{n+1}}{f_{n+2}}=\binom{f_{n+2}}{f_{n+3}} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{k}\binom{f_{n}}{f_{n+1}}=\binom{f_{n+k}}{f_{n+k+1}}
\end{aligned}
$$

Another log algorithm!

$$
\text { Define } \phi=(1+\sqrt{ } 5) / 2 \quad \phi^{\prime}=(1-\sqrt{ } 5) / 2
$$

The golden ratio again.

Prove by induction on n that

$$
f n=\left(\phi^{n}-\phi^{\prime n}\right) / \sqrt{5}
$$


[^0]:    Gries and Levin
    Computing a Fibonacci number in log time. IPL 2 (October 1980), 68-69.

