
11/20/18

1

CS2110DEBUGGING

Announcements

¨ Lunch with Professors – sign up, including today!
¨ Prelim 2 Regrade Requests due tonight at 11:59PM

2

Context

¨ 2110 teaches you how to write code with care. Use:
¤ meaningful comments
¤ meaningful variable names

¤ loop invariants
¤ preconditions
¤ asserts

¤ testing (lots and lots of testing!)
¤ clean style

¤ a structure that is easy to reason about

3

What not to do: https://www.ioccc.org

Correctness first, then Performance

"Programmers waste enormous amounts of time thinking
about, or worrying about, the speed of noncritical parts
of their programs, and these attempts at efficiency
actually have a strong negative impact when debugging
and maintenance are considered. We should forget
about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

—Donald Knuth
Correctness first, then speed.
If speed really matters, use a profiler.

4

Sometimes…

…despite your best efforts, your code will not work

Now what?

5

6

The 1st Bug On September 9, 1947, U.S. Navy officers found
a moth between the relays on the Harvard Mark
II computer they were working on. In those days

computers filled rooms and the warmth of the internal components
attracted moths, flies and other flying creatures. Those creatures then
shortened circuits and caused the computer to malfunction.

https://thenextweb.com/shareables/2013/09/18/the-very-first-computer-bug/

https://www.ioccc.org/

11/20/18

2

7

Debugging is twice as hard as
writing the code in the first place.
Therefore, if you write the code as
cleverly as possible, you are, by
definition, not smart enough to
debug it. —BRIAN KERNIGHAN

If debugging is the process of
removing software bugs, then
programming must be the process
of putting them in. —E. W. DIJKSTRA

Deleted code is debugged code.
—JEFF SICKEL

Debugging 101

Step 1: know what the correct behavior is
Step 2: find a single, reproducible* case where your
code is incorrect
Step 3: figure out what your code is doing

NOT: why your code isn’t doing what it should

(your code is doing exactly what you told it to)

*if your code (or code you call) generates a random
anywhere you need to stop (or seed) that

8

Inspecting your code…

Several approaches. Look at:
+ the last thing you touched
+ the part you feel the least sure of
+ the code most associated with the error you’re

observing

– every single line of code

9

Step through your code

¨ Print statements
¨ Use a debugger!

10

How to start the Eclipse debugger
11

OR

12

11/20/18

3

Under the Run Menu
13

The controls of your debugger
How you navigate through the
execution of your code in
debug mode.

Lines or variables of interest

2 days ago on piazza
14

Breakpoints, Watchpoints, etc.

Some basic functionality common to all debuggers
¨ Breakpoint

¤ a line you want to see get executed

¨ Conditional Breakpoint
¤ a line you sometimes want to see get executed
¤ Warning: can make your code super slow

¨ Watchpoint
¤ a global variable you want to track

n When read
n When written to

15

Breakpoints & Watchpoints:
https://help.eclipse.org/photon/index.jsp?topic=%2F
org.eclipse.cdt.doc.user%2Ftasks%2Fcdt_o_brkpnts_w
atch.htm

16

https://help.eclipse.org/photon/index.jsp?topic=%2Forg.eclipse.cdt.doc.user%2Ftasks%2Fcdt_o_brkpnts_watch.htm

