
10/31/18

1

1

Spanning Trees, greedy algorithms
Lecture 20
CS2110 – Fall 2018

1

About A6, Prelim 2

Prelim 2: Thursday, 15 November.
Visit exams page of course website and read carefully to
find out when you take it (5:30 or 7:30) and what to do
if you have a conflict.
Time assignments are different from Prelim 1!
Time assignments are different from Prelim 1!
Time assignments are different from Prelim 1!

Time assignments are different from Prelim 1!

Undirected trees

An undirected graph is a tree if there is exactly
one simple path between any pair of vertices

What’s the root?
It doesn’t matter!
Any vertex can be
root.

Facts about trees

• #E = #V – 1
• connected
• no cycles

Any two of these
properties imply the
third and thus imply
that the graph is a tree

4

Tree with #V = 1, #E = 0

Tree with #V = 3, #E = 2

Facts about trees

• #E = #V – 1
• connected
• no cycles

Any two of these
properties imply the
third and thus imply
that the graph is a tree

5

Spanning trees
A spanning tree of a connected undirected graph (V, E) is
a subgraph (V, E') that is a tree6

• Same set of vertices V
• E' ⊆ E
• (V, E') is a tree

• Same set of vertices V
• Maximal set of edges that

contains no cycle

• Same set of vertices V
• Minimal set of edges that

connect all vertices

Three equivalent definitions

10/31/18

2

7

Spanning trees: examples

http://mathworld.wolfram.com/SpanningTree.html

• Start with the whole graph – it is
connected

Finding a spanning tree: Subtractive method

• While there is a cycle:
Pick an edge of a cycle and throw it out
– the graph is still connected (why?)

One step of the algorithm

Maximal set of
edges that

contains no
cycle

nondeterministic
algorithm

/** Visit all nodes reachable along unvisited paths from u.
* Pre: u is unvisited. */

public static void dfs(int u) {
Stack s= (u);
// inv: All nodes to be visited are reachable along an
// unvisited path from a node in s.
while (s is not empty) {

u= s.pop();
if (u has not been visited) {

visit u;
for each edge (u, v) leaving u:

s.push(v);
}

}
}

Aside: Test whether an undirected graph has a cycle

We modify iterative dfs
to calculate whether the
graph has a cycle

/** Return true if the nodes reachable from u have a cycle. */
public static boolean hasCycle(int u) {

Stack s= (u);
// inv: All nodes to be visited are reachable along an
// unvisited path from a node in s.
while (s is not empty) {

u= s.pop();
if (u has been visited) return true;
visit u;
for each edge (u, v) leaving u {

s.push(v);
}

}
return false;

}

Aside: Test whether an undirected graph has a cycle

• Start with the whole graph – it is
connected

Finding a spanning tree: Subtractive method

• While there is a cycle:
Pick an edge of a cycle and throw it out
– the graph is still connected (why?)

One step of the algorithm

Maximal set of
edges that

contains no
cycle

nondeterministic
algorithm

• Start with no edges

Finding a spanning tree: Additive method

• While the graph is not connected:
Choose an edge that connects 2
connected components and add it
– the graph still has no cycle (why?)

Minimal set
of edges that

connect all
vertices

Tree edges will be red.
Dashed lines show original edges.
Left tree consists of 5 connected components, each a node

nondeterministic
algorithm

10/31/18

3

Minimum spanning trees

• Suppose edges are weighted (> 0)
• We want a spanning tree of minimum cost (sum of

edge weights)

• Some graphs have exactly one minimum spanning
tree. Others have several trees with the same
minimum cost, each of which is a minimum
spanning tree

13

• Useful in network routing & other applications.
For example, to stream a video

14

Greedy algorithm

A greedy algorithm follows the heuristic of making a locally
optimal choice at each stage, with the hope of finding a global
optimum.
Example. Make change using the fewest number of coins.
Make change for n cents, n < 100 (i.e. < $1)
Greedy: At each step, choose the largest possible coin

If n >= 50 choose a half dollar and reduce n by 50;
If n >= 25 choose a quarter and reduce n by 25;
As long as n >= 10, choose a dime and reduce n by 10;
If n >= 5, choose a nickel and reduce n by 5;
Choose n pennies.

Greediness works here
15

You’re standing at point x. Your goal is to climb the
highest mountain.

Two possible steps: down the hill or up the hill. The
greedy step is to walk up hill. That is a local optimum
choice, not a global one. Greediness works in this case.

x

Greediness doesn’t work here
16

You’re standing at point x, and your goal is to climb the
highest mountain.

Two possible steps: down the hill or up the hill. The
greedy step is to walk up hill. But that is a local optimum
choice, not a global one. Greediness fails in this case.

x

17

Greedy algorithm —doesn’t always work!

A greedy algorithm follows the heuristic of making a locally
optimal choice at each stage, with the hope of finding a global
optimum. Doesn’t always work

Example. Make change using the fewest number of coins.
Coins have these values: 7, 5, 1
Greedy: At each step, choose the largest possible coin

Consider making change for 10.
The greedy choice would choose: 7, 1, 1, 1.
But 5, 5 is only 2 coins.

Finding a minimal spanning tree

Suppose edges have > 0 weights
Minimal spanning tree: sum of weights is a minimum

We show two greedy algorithms for finding a minimal spanning
tree. They are abstract, at a high level.

They are versions of the basic additive method we have already
seen: at each step add an edge that does not create a cycle.

Kruskal: add an edge with minimum weight. Can have a forest
of trees.

Prim (JPD): add an edge with minimum weight but so that the
added edges (and the nodes at their ends) form one tree

10/31/18

4

Minimal set
of edges that

connect all
vertices

At each step, add an edge (that does not form
a cycle) with minimum weight

3

2

5

46
4

edge with
weight 2

3

2

5

46
4

edge with
weight 3

3

2

5

46
4

One of
the 4’s 3

2

5

46
4

The 5 3

2

5

46
4

MST using Kruskal’s algorithm

Red edges need not form tree (until end)

Kruskal Minimal set
of edges that

connect all
vertices

Start with the all the nodes and no edges, so
there is a forest of trees, each of which is a
single node (a leaf).

At each step, add an edge (that does not form a cycle)
with minimum weight

We do not look more closely at how best to implement
Kruskal’s algorithm —which data structures can be used to
get a really efficient algorithm.

Leave that for later courses, or you can look them up online
yourself.

We now investigate Prim’s algorithm

MST using “Prim’s algorithm”
(should be called “JPD algorithm”)

!

Developed in 1930 by Czech mathematician Vojtěch Jarník.
Práce Moravské Přírodovědecké Společnosti, 6, 1930,
pp. 57–63. (in Czech)

Developed in 1957 by computer scientist Robert C. Prim.
Bell System Technical Journal, 36 (1957), pp. 1389–1401

Developed about 1956 by Edsger Dijkstra and published in
in 1959. Numerische Mathematik 1, 269–271 (1959)

Minimal set
of edges that

connect all
vertices

At each step, add an edge (that does not form
a cycle) with minimum weight, but keep
added edge connected to the start (red) node

3

2

5

46
4

edge with
weight 3

3

2

5

46
4

edge with
weight 5

One of
the 4’s 3

2

5

46
4

The 2 3

2

5

46
4

Prim’s algorithm

3

2

5

46
4

Difference between Prim and Kruskal

Here, Prim chooses (0, 1)
Kruskal chooses (3, 4)

0

1 2

3 4

3

2

5

46
4

0

1 2

3 4

2

3

5

46
4

Here, Prim chooses (0, 2)
Kruskal chooses (3, 4)

Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t
But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

Difference between Prim and Kruskal

Here, Prim chooses (0, 1)
Kruskal chooses (3, 4)

0

1 2

3 4

3

2

5

46
4

0

1 2

3 4

2

3

5

46
4

Here, Prim chooses (0, 2)
Kruskal chooses (3, 4)

Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t
But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

10/31/18

5

Difference between Prim and Kruskal
Prim requires that the constructed red tree
always be connected.
Kruskal doesn’t
But: Both algorithms find a minimal spanning tree

Minimal set
of edges that

connect all
vertices

If the edge weights are all different, the Prim and
Kruskal algorithms construct the same tree.

Prim’s (JPD) spanning tree algorithm

Given: graph (V, E) (sets of vertices and edges)
Output: tree (V1, E1), where

V1 = V
E1 is a subset of E
(V1, E1) is a minimal spanning tree –sum of edge

weights is minimal

26

3

2

5

46
4

3

2

5

46
4

V1= {an arbitrary node of V}; E1= {};
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E

while (V1.size() < V.size()) {
Pick an edge (u,v) with:

min weight, u in V1,
v not in V1;

Add v to V1;
Add edge (u, v) to E1

}

27

Consider having a set S of edges with the property:
If (u, v) an edge with u in V1 and v not in V1, then (u,v) is in S

3

2

5

46
4

V1: 2 red nodes
E1: 1 red edge
S: 2 edges leaving red nodes

Prim’s (JPD) spanning tree algorithm
V1= {an arbitrary node of V}; E1= {};
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E

while (V1.size() < V.size()) {
Pick an edge (u,v) with:

min weight, u in V1,
v not in V1;

Add v to V1;
Add edge (u, v) to E1

}

28

Consider having a set S of edges with the property:
If (u, v) an edge with u in V1 and v not in V1, then (u,v) is in S

3

2

5

46
4

V1: 3 red nodes
E1: 2 red edges
S: 3 edges leaving red nodes

Prim’s (JPD) spanning tree algorithm

Prim’s (JPD) spanning tree algorithm
V1= {an arbitrary node of V}; E1= {};
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E

while (V1.size() < V.size()) {
Pick an edge (u,v) with:

min weight, u in V1,
v not in V1;

Add v to V1;
Add edge (u, v) to E1

}

29

Consider having a set S of edges with the property:
If (u, v) an edge with u in V1 and v not in V1, then (u,v) is in S

3

2

5

46
4

V1: 4 red nodes
E1: 3 red edges
S: 3 edges leaving red nodes

Note: the edge with weight 6 is
not in in S – this avoids cycles

V1= {an arbitrary node of V}; E1= {};
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E
S= set of edges leaving the single node in V1;
while (V1.size() < V.size()) {

Pick an edge (u,v) with:
min weight, u in V1,
v not in V1;

Add v to V1;
Add edge (u, v) to E1

}

30

Consider having a set S of edges with the property:
If (u, v) an edge with u in V1 and v not in V1, then (u,v) is in S

Remove from S an edge
(u, v) with min weight

if v is not in V1:
add v to V1; add (u,v) to E1;
add edges leaving v to S

Prim’s (JPD) spanning tree algorithm

10/31/18

6

V1= {start node}; E1= {};
S= set of edges leaving the single node in V1;
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E,
// All edges (u, v) in S have u in V1,
// if edge (u, v) has u in V1 and v not in V1, (u, v) is in S
while (V1.size() < V.size()) {

Remove from S an edge (u, v) with min weight;
if (v not in V1) {

add v to V1; add (u,v) to E1;
add edges leaving v to S

}
}

31

Question: How should
we implement set S?

Prim’s (JPD) spanning tree algorithm
V1= {start node}; E1= {};
S= set of edges leaving the single node in V1;
//inv: (V1, E1) is a tree, V1 ≤ V, E1 ≤ E,
// All edges (u, v) in S have u in V1,
// if edge (u, v) has u in V1 and v not in V1, (u, v) is in S
while (V1.size() < V.size()) {

Remove from S a min-weight edge (u, v);
if (v not in V1) {

add v to V1; add (u,v) to E1;
add edges leaving v to S

}
}

32

Implement S as a heap.
Use adjacency lists for edges

log #E#V

log #E#E

Thought: Could we use for S a
set of nodes instead of edges?
Yes. We don’t go into that here

Prim’s (JPD) spanning tree algorithm

33

Maze generation using Prim’s algorithm

https://en.wikipedia.org/wiki/Maze_generation_algorithm

The generation of a maze using Prim's algorithm on a randomly
weighted grid graph that is 30x20 in size.

jonathanzong.com/blog/2012/11/06/maze-generation-with-prims-algorithm

34

Greedy algorithms

Suppose the weights are all 1.
Then Dijkstra’s shortest-path
algorithm does a breath-first search!

1

1

1

11
1

11

Dijkstra’s and Prim’s algorithms look similar.
The steps taken are similar, but at each step
•Dijkstra’s chooses an edge whose end node has a minimum
path length from start node
•Prim’s chooses an edge with minimum length

35

Breadth-first search, Shortest-path, Prim

Greedy algorithm: An algorithm that uses the heuristic of making
the locally optimal choice at each stage with the hope of finding
the global optimum.

Dijkstra’s shortest-path algorithm makes a locally optimal choice:
choosing the node in the Frontier with minimum L value and
moving it to the Settled set. And, it is proven that it is not just a
hope but a fact that it leads to the global optimum.

Similarly, Prim’s and Kruskal’s locally optimum choices of adding
a minimum-weight edge have been proven to yield the global
optimum: a minimum spanning tree.

BUT: Greediness does not always work!

Similar code structures

while (a vertex is unmarked) {
v= best unmarked vertex
mark v;
for (each w adj to v)

update D[w];
}

• Breadth-first-search (bfs)
–best: next in queue
–update: D[w] = D[v]+1
• Dijkstra’s algorithm
–best: next in priority queue
–update: D[w] = min(D[w],
D[v]+c(v,w))

• Prim’s algorithm
–best: next in priority queue
–update: D[w] = min(D[w], c(v,w))

36

c(v,w) is the
v®w edge weight

10/31/18

7

Traveling salesman problem

Given a list of cities and the distances between each pair, what is
the shortest route that visits each city exactly once and returns to
the origin city?

– The true TSP is very hard (called NP complete)… for this
we want the perfect answer in all cases.

– Most TSP algorithms start with a spanning tree, then
�evolve� it into a TSP solution. Wikipedia has a lot of
information about packages you can download…

37

But really, how hard can it be?
How many paths can there be that visit all of 50 cities?
12,413,915,592,536,072,670,862,289,047,373,375,038,521,486,35
4,677,760,000,000,000

Graph Algorithms

• Search
– Depth-first search
– Breadth-first search

• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

