
Lecture 17
CS2110GRAPHS

Announcements

¨ A5 Heaps Due October 27
¨ Prelim 2 in ~3 weeks: Thursday Nov 15
¨ A4 being graded right now
¨ Mid-Semester College Transitions Survey on Piazza

2

These aren't the graphs we're looking for

¨ A graph is a data structure

¨ A graph has:
¤ a set of vertices
¤ a set of edges between vertices

¨ Graphs are a generalization of trees

Graphs

This is a graph

This is a graph

A Social Network Graph

Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are
connected by an edge.

Do the same thing for a map of the world showing countries

Graphs

K5
K3,3

Undirected graphs

¨ A undirected graph is a pair (V, E) where
¤ V is a (finite) set
¤ E is a set of pairs (u, v) where u,v Î V

n Often require u ≠ v (i.e., no self-loops)

¨ Element of V is called a vertex or node
¨ Element of E is called an edge or arc

¨ |V| = size of V, often denoted by n
¨ |E| = size of E, often denoted by m

A

B C

DE

V = {A, B, C, D, E}
E = {(A, B), (A, C),

(B, C), (C, D)}

|V| = 5
|E| = 4

Directed graphs

¨ Every undirected graph can be easily
converted to an equivalent directed
graph via a simple transformation:
¤ Replace every undirected edge with two

directed edges in opposite directions

¨ … but not vice versa

A

B C

DE

V = {A, B, C, D, E}
E = {(A, C), (B, A),

(B, C), (C, D),
(D, C)}

|V| = 5
|E| = 5

A directed graph (digraph) is a lot like an
undirected graph

V is a (finite) set
E is a set of ordered pairs (u, v) where u,v Î V

Graph terminology

¨ Vertices u and v are called
¤ the source and sink of the directed edge (u, v),

respectively
¤ the endpoints of (u, v) or {u, v}

¨ Two vertices are adjacent if they are connected
by an edge

¨ The outdegree of a vertex u in a directed
graph is the number of edges for which u is the
source

¨ The indegree of a vertex v in a directed graph
is the number of edges for which v is the sink

¨ The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint

A

B C

DE

A

B C

DE

2
1

2

0

More graph terminology

¨ A path is a sequence v0,v1,v2,...,vp of vertices
such that for 0 ≤ i < p,
¤ (vi, vi+1)∈E if the graph is directed

¤ {vi, vi+1}∈E if the graph is undirected

¨ The length of a path is its number of edges
¨ A path is simple if it doesn’t repeat any vertices
¨ A cycle is a path v0, v1, v2, ..., vp such that v0 = vp
¨ A cycle is simple if it does not repeat any

vertices except the first and last
¨ A graph is acyclic if it has no cycles
¨ A directed acyclic graph is called a DAG

A

B C

DE

A

B C

DE

DAG

Not a DAG

Path
A,C,D

Is this a DAG?

¨ Intuition:
¤ If it’s a DAG, there must be a vertex with indegree zero

¨ This idea leads to an algorithm
¤ A digraph is a DAG if and only if we can iteratively delete

indegree-0 vertices until the graph disappears

F

B

A

C

D

E

Yes!
It is a DAG.

¨ We just computed a topological sort of the DAG
¤ This is a numbering of the vertices such that all edges go

from lower- to higher-numbered vertices
¤ Useful in job scheduling with precedence constraints

1

2

3

4

5

6

Topological sort

k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}

1. Abstract algorithm
2. Don’t really want to change the graph.
3. Will have to use some data structures

to support this efficiently.
F

B

A

C

D

E0
3

3

1

2

2à

à1

à2

A
B
C
D
E
F

0

0

1

0k= à1

Topological sort

Graph coloring

¨ A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

¨ How many colors are needed to color this graph?

A

B

C

D

E
F

An application of coloring

¨ Vertices are tasks
¨ Edge (u, v) is present if tasks u and v each require access to

the same shared resource, and thus cannot execute
simultaneously

¨ Colors are time slots to schedule the tasks
¨ Minimum number of colors needed to color the graph =

minimum number of time slots required

A

B

C

D

E
F

Coloring a graph

¨ How many colors are
needed to color the states
so that no two adjacent
states have the same color?

¨ Asked since 1852
¨ 1879: Kemp publishes a

proof that only 4 colors are
needed!

¨ 1880: Julius Peterson finds a
flaw in Kemp's proof…

Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.

They used a computer to check that those 1,936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot
of controversy.

Gries looked at their computer program, a recursive program written in the
assembly language of the IBM 7090 computer, and found an error, which was
safe (it said something didn’t have the property when it did) and could be fixed.
Others did the same.

Since then, there have been improvements. And a formal proof has even been
done in the Coq proof system.

Four Color Theorem

Planarity

¨ A graph is planar if it can be drawn in the plane
without any edges crossing

¨ Is this graph planar?

A

B

C

D

E

F

Planarity

¨ A graph is planar if it can be drawn in the plane
without any edges crossing

¨ Is this graph planar?
¤ Yes!

A

B

C

D

E

F

Planarity

¨ A graph is planar if it can be drawn in the plane
without any edges crossing

¨ Is this graph planar?
¤ Yes!

A

B

C

D

E

F

Detecting Planarity

Kuratowski's Theorem:

¨ A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along
the edges shown)

K5 K3,3

John Hopcroft & Robert Tarjan

Turing Award in 1986 “for fundamental
achievements in the design and analysis of
algorithms and data structures”

One of their fundamental achievements
was a linear-time algorithm for determining
whether a graph is planar.

25

David Gries & Jinyun Xue

Tech Report, 1988

Abstract: We give a rigorous, yet, we hope, readable,
presentation of the Hopcroft-Tarjan linear algorithm for
testing the planarity of a graph, using more modern
principles and techniques for developing and presenting
algorithms that have been developed in the past 10-12
years (their algorithm appeared in the early 1970's).
Our algorithm not only tests planarity but also constructs
a planar embedding, and in a fairly straightforward
manner. The paper concludes with a short discussion of
the advantages of our approach.

26

Bipartite graphs

¨ A directed or undirected graph is bipartite if the vertices can
be partitioned into two sets such that no edge connects two
vertices in the same set

¨ The following are equivalent
¤ G is bipartite
¤ G is 2-colorable
¤ G has no cycles of odd length

1

2

3

A

B

C

D

Representations of graphs

2 3

2 4

3

1

2

3

4

Adjacency List Adjacency Matrix

1 2

34

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

1 2 3

1

2

3

Graph Quiz

3 2

3

1

2

3 1

0 1 1

0 0 0

0 1 0

Graph 1: Graph 2:

Which of the following two graphs are DAGs?

Directed Acyclic Graph

Graph 1

3 2

3

1

2

3 1

1
3

2
Is this a DAG?

1 2 3

1

2

3

Graph 2

0 1 1

0 0 0

0 1 0

1 3

2

Is this a DAG?

Adjacency Matrix vs. Adjacency List

1 2 3 4
1
2
3
4

0 1 0 1
0 0 1 0
0 0 0 0
0 1 1 0

v = number of vertices
e = number of edges
d(u) = degree of u

= no. edges leaving u

2 3

2 4

3

1

2

3

4

Matrix Property List

Space
Time to enumerate all edges
Time to answer “Is there an

edge from u1 to u2 ?”
better for

O(v2)
O(v2)

O(1)

dense graphs

O(v + e)
O(v + e)

O(d(u1))

sparse graphs

Graph algorithms

¨ Search
¤ Depth-first search
¤ Breadth-first search

¨ Shortest paths
¤ Dijkstra's algorithm

¨ Minimum spanning trees
¤ Jarnik/Prim/Dijkstra algorithm
¤ Kruskal's algorithm

