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Announcements

¨ A5 Heaps Due October 27
¨ Prelim 2 in ~3 weeks: Thursday Nov 15
¨ A4 being graded right now
¨ Mid-Semester College Transitions Survey on Piazza

2



These aren't the graphs we're looking for



¨ A graph is a data structure

¨ A graph has:
¤ a set of vertices
¤ a set of edges between vertices

¨ Graphs are a generalization of trees

Graphs



This is a graph



This is a graph



A Social Network Graph



Viewing the map of states as a graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are 
connected by an edge.

Do the same thing for a map of the world showing countries



Graphs

K5
K3,3



Undirected graphs

¨ A undirected graph is a pair (V, E) where
¤ V is a (finite) set
¤ E is a set of pairs (u, v) where u,v Î V

n Often require u ≠ v (i.e., no self-loops)

¨ Element of V is called a vertex or node
¨ Element of E is called an edge or arc

¨ |V| = size of V, often denoted by n
¨ |E| = size of E, often denoted by m
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V = {A, B, C, D, E}
E = {(A, B), (A, C), 

(B, C),  (C, D)}

|V| = 5
|E| = 4



Directed graphs

¨ Every undirected graph can be easily 
converted to an equivalent directed 
graph via a simple transformation:
¤ Replace every undirected edge with two 

directed edges in opposite directions

¨ … but not vice versa
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V = {A, B, C, D, E}
E = {(A, C), (B, A), 

(B, C),  (C, D),
(D, C)}

|V| = 5
|E| = 5

A directed graph (digraph) is a lot like an 
undirected graph 

V is a (finite) set
E is a set of ordered pairs (u, v) where u,v Î V



Graph terminology

¨ Vertices u and v are called
¤ the source and sink of the directed edge (u, v), 

respectively
¤ the endpoints of (u, v) or {u, v}

¨ Two vertices are adjacent if they are connected 
by an edge

¨ The outdegree of a vertex u in a directed 
graph is the number of edges for which u is the 
source

¨ The indegree of a vertex v in a directed graph 
is the number of edges for which v is the sink

¨ The degree of a vertex u in an undirected 
graph is the number of edges of which u is an 
endpoint
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More graph terminology

¨ A path is a sequence v0,v1,v2,...,vp of vertices 
such that for 0 ≤ i < p,
¤ (vi, vi+1)∈E if the graph is directed

¤ {vi, vi+1}∈E if the graph is undirected

¨ The length of a path is its number of edges 
¨ A path is simple if it doesn’t repeat any vertices
¨ A cycle is a path v0, v1, v2, ..., vp such that v0 = vp
¨ A cycle is simple if it does not repeat any 

vertices except the first and last
¨ A graph is acyclic if it has no cycles
¨ A directed acyclic graph is called a DAG
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DAG

Not a DAG

Path
A,C,D



Is this a DAG?

¨ Intuition: 
¤ If it’s a DAG, there must be a vertex with indegree zero

¨ This idea leads to an algorithm
¤ A digraph is a DAG if and only if we can iteratively delete 

indegree-0 vertices until the graph disappears
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Yes! 
It is a DAG.



¨ We just computed a topological sort of the DAG
¤ This is a numbering of the vertices such that all edges go 

from lower- to higher-numbered vertices
¤ Useful in job scheduling with precedence constraints
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Topological sort



k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}

1. Abstract algorithm
2. Don’t really want to change the graph.
3. Will have to use some data structures 

to support this efficiently.
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Graph coloring

¨ A coloring of an undirected graph is an assignment 
of a color to each node such that no two adjacent 
vertices get the same color

¨ How many colors are needed to color this graph?
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An application of coloring

¨ Vertices are tasks
¨ Edge (u, v) is present if tasks u and v each require access to 

the same shared resource, and thus cannot execute 
simultaneously

¨ Colors are time slots to schedule the tasks
¨ Minimum number of colors needed to color the graph = 

minimum number of time slots required
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Coloring a graph

¨ How many colors are 
needed to color the states 
so that no two adjacent 
states have the same color?

¨ Asked since 1852
¨ 1879: Kemp publishes a 

proof that only 4 colors are 
needed!

¨ 1880: Julius Peterson finds a 
flaw in Kemp's proof…



Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.

They used a computer to check that those 1,936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot 
of controversy.

Gries looked at their computer program, a recursive program written in the 
assembly language of the IBM 7090 computer, and found an error, which was 
safe (it said something didn’t have the property when it did) and could be fixed. 
Others did the same.

Since then, there have been improvements. And a formal proof has even been 
done in the Coq proof system. 

Four Color Theorem



Planarity

¨ A graph is planar if it can be drawn in the plane 
without any edges crossing

¨ Is this graph planar?
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Planarity

¨ A graph is planar if it can be drawn in the plane 
without any edges crossing

¨ Is this graph planar?
¤ Yes!
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Planarity

¨ A graph is planar if it can be drawn in the plane 
without any edges crossing

¨ Is this graph planar?
¤ Yes!
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Detecting Planarity

Kuratowski's Theorem:

¨ A graph is planar if and only if it does not contain a 
copy of K5 or K3,3 (possibly with other nodes along 
the edges shown)

K5 K3,3



John Hopcroft & Robert Tarjan

Turing Award in 1986 “for fundamental 
achievements in the design and analysis of 
algorithms and data structures”

One of their fundamental achievements 
was a linear-time algorithm for determining 
whether a graph is planar.
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David Gries & Jinyun Xue

Tech Report, 1988

Abstract: We give a rigorous, yet, we hope, readable, 
presentation of the Hopcroft-Tarjan linear algorithm for 
testing the planarity of a graph, using more modern 
principles and techniques for developing and presenting 
algorithms that have been developed in the past 10-12 
years (their algorithm appeared in the early 1970's). 
Our algorithm not only tests planarity but also constructs 
a planar embedding, and in a fairly straightforward 
manner. The paper concludes with a short discussion of 
the advantages of our approach.
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Bipartite graphs

¨ A directed or undirected graph is bipartite if the vertices can 
be partitioned into two sets such that no edge connects two 
vertices in the same set

¨ The following are equivalent
¤ G is bipartite
¤ G is 2-colorable
¤ G has no cycles of odd length
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Representations of graphs
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Adjacency List Adjacency Matrix
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1  2   3   4
1
2
3
4

0   1   0   1
0   0   1   0
0   0   0   0
0   1   1   0
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Graph Quiz
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Graph 1: Graph 2:

Which of the following two graphs are DAGs?

Directed Acyclic Graph



Graph 1
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Is this a DAG?
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Graph 2

0   1 1

0   0   0

0   1 0
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Is this a DAG?



Adjacency Matrix       vs.       Adjacency List

1  2   3   4
1
2
3
4

0   1   0   1
0   0   1   0
0   0   0   0
0   1   1   0

v = number of vertices
e = number of edges
d(u) = degree of u

= no. edges leaving u
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Matrix Property List

Space
Time to enumerate all edges
Time to answer “Is there an 

edge from u1 to u2 ?”
better for

O(v2)
O(v2)

O(1)

dense graphs

O(v + e)
O(v + e)

O(d(u1))

sparse graphs



Graph algorithms

¨ Search
¤ Depth-first search
¤ Breadth-first search

¨ Shortest paths
¤ Dijkstra's algorithm

¨ Minimum spanning trees
¤ Jarnik/Prim/Dijkstra algorithm
¤ Kruskal's algorithm


