
ASTS, GRAMMARS, PARSING,
TREE TRAVERSALS

Lecture 14
CS2110 – Fall 2018

1

Announcements
2

¨ Today: The last day to request prelim regrades
¨ Assignment A4 due next Thursday night. Please work on it early

and steadily. Watch the two videos on recursion on trees before
working on A4!

¨ Next week’s recitation. Learn about interfaces Iterator and Iterable.
There will be 15 minutes of videos to watch. Then, in recitation,
you will fix your A3 so that a foreach loop can be used on it.

DLL<Integer> d= new DLL<Integer>();
…
for (Integer i : d) { … }

Expression Trees
3

we can draw a syntax tree for the
Java expression 2 * 1 – (1 + 0).

-
*

2 1
+

1 0

Pre-order, Post-order, and In-order
4

-
*

2 1
+

1 0

Pre-order traversal:
1. Visit the root
2. Visit the left subtree (in pre-order)
3. Visit the right subtree

- * 2 1 + 1 0

Pre-order, Post-order, and In-order
5

-
*

2 1
+

1 0

Post-order traversal
1. Visit the left subtree (in post-order)
2. Visit the right subtree
3. Visit the root

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

Pre-order, Post-order, and In-order
6

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

In-order traversal
1. Visit the left subtree (in-order)
2. Visit the root
3. Visit the right subtree

2 * 1 - 1 + 0

Pre-order, Post-order, and In-order
7

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + -

In-order traversal (2 * 1) - (1 + 0)

To avoid ambiguity, add parentheses around
subtrees that contain operators.

In Defense of Postfix Notation
8

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2 1 * 1 0 + * *
*

2 1
+

1 0

In Defense of Postfix Notation
9

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 * 1 0 + *

2

*
*

2 1
+

1 0

In Defense of Postfix Notation
10

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

* 1 0 + *

2
1

*
*

2 1
+

1 0

In Defense of Postfix Notation
11

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 0 + *

2

*
*

2 1
+

1 0

In Defense of Postfix Notation
12

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

+ *

2
1
0

*
*

2 1
+

1 0

In Defense of Postfix Notation
13

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

*

2
1

*
*

2 1
+

1 0

In Defense of Postfix Notation
14

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2

*
*

2 1
+

1 0

In Defense of Postfix Notation
15

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2

In about 1974, Gries paid
$300 for an HP calculator,
which had some memory
and used postfix notation!
Still works. a.k.a. “reverse Polish notation”

In Defense of Prefix Notation
16

¨ Function calls in most programming languages use
prefix notation: like add(37, 5).

¨ Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax simpler.

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1) (fib (- n 2)))))

Determine tree from preorder and
postorder

18

Suppose inorder is B C A E D
preorder is A B C D E

Can we determine the tree uniquely?

Determine tree from preorder and
postorder

19

Suppose inorder is B C A E D
preorder is A B C D E

Can we determine the tree uniquely?

What is the root? preorder tells us: A

What comes before/after root A? Inorder tells us:
Before : B C
After: E D

Determine tree from preorder and
postorder

20

Suppose inorder is B C A E D
preorder is A B C D E

The root is A.

Left subtree contains B C Right subtree contains E D

Now figure out left, right subtrees using the same method.
From the above:
For left subtree For right subtree:

inorder is: B C inorder is: E D
preorder is: B C preorder is: D E
root is: B root is: D
Right subtree: C left subtree: E

Expression trees: in code
21

public class int implements Expr {
private int v;
public int eval() { return v; }
public String inorder() {

return " " + v + " ";
}

}

public class Sum implements Expr {
private Expr left, right;
public int eval() {
return left.eval() + right.eval();

}
public String infinorder() {
return "(" + left.infix() +

"+" + right.infix() + ")";
}

}

public interface Expr {
String inorder(); // returns an inorder representation
int eval(); // returns the value of the expression

}

Grammars
22

¨ Not all sequences of words are sentences:
The ate cat rat the

¨ How many legal sentences are there?
¨ How many legal Java programs are there?
¨ How can we check whether a string is a Java program?

The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the mat slowly.
The small cat that sat in the hat ate the big rat
on the mat slowly, then got sick.

Grammars
23

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Read ® as “may
be composed of”

Grammars
24

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Sentence

Grammars
25

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Noun Verb Noun

Grammars
26

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies Verb Noun

Grammars
27

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like Noun

Grammars
28

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like astrophysics

Grammars
30

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like astrophysics
goats see bunnies
… (18 sentences total)

�The words goats, astrophysics, bunnies, like, see are called
tokens or terminals

�The words Sentence, Noun, Verb are called nonterminals

A recursive grammar
31

Sentence ® Sentence and Sentence

Sentence ® Sentence or Sentence
Sentence ® Noun Verb Noun

Noun ® goats

Noun ® astrophysics

Noun ® bunnies
Verb ® like

| see

bunnies like astrophysics
goats see bunnies
bunnies like goats and goats see bunnies
… (infinite possibilities!)

The recursive definition of Sentence makes this grammar infinite.

Grammars for programming languages
34

A grammar describes every possible legal program.
You could use the grammar for Java to list every possible Java
program. (It would take forever.)

A grammar also describes how to “parse” legal programs.
The Java compiler uses a grammar to translate your text file
into a syntax tree—and to decide whether a program is legal.

docs.oracle.com/javase/specs/jls/se8/html/jls-2.html#jls-2.3

docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

http://docs.oracle.com/javase/specs/jls/se8/html/jls-2.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

Grammar for simple expressions (not the best)
35

E ® integer
E ® (E + E)
Simple expressions:
¨ An E can be an integer.
¨ An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by this
grammar is a recursively-defined set

¨ Is language finite or infinite?
¨ Do recursive grammars always

yield infinite languages?

Some legal expressions:
§ 2
§ (3 + 34)
§ ((4+23) + 89)

Some illegal expressions:
§ (3
§ 3 + 4

Tokens of this grammar:
(+) and any integer

