
In Defense of Postfix Notation

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

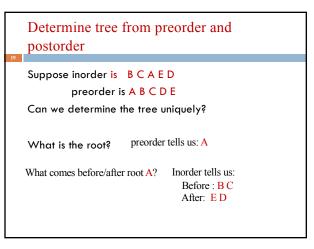
In Defense of Postfix Notation

- Execute expressions in postfix notation by reading from left to right.
- □ Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

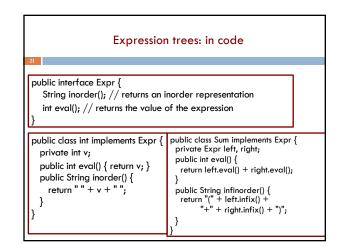
In Defense of Postfix Notation

- Execute expressions in postfix notation by reading from left to right.
- Numbers: push onto the stack.
- Operators: pop the operands off the stack, do the operation, and push the result onto the stack.

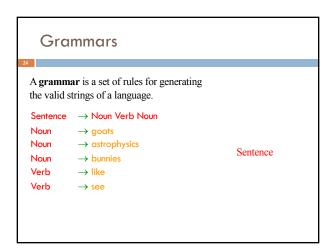
In about 1974, Gries paid \$300 for an HP calculator, which had some memory and used postfix notation! Still works.



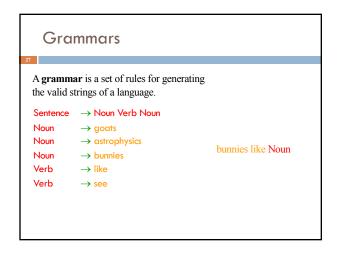
In Defense of Prefix Notation Function calls in most programming languages use prefix notation: like add(37, 5). Some languages (Lisp, Scheme, Racket) use prefix notation for everything to make the syntax simpler.


(define (fib n) (if (<= n 2) 1 (+ (fib (- n 1) (fib (- n 2)))))

Determine tree from preorder and postorder

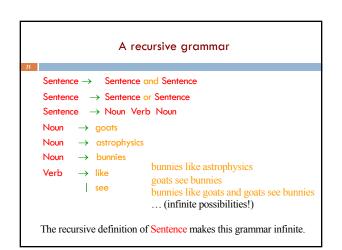

Suppose inorder is B C A E D preorder is A B C D E Can we determine the tree uniquely?

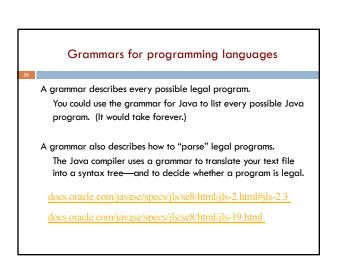
Determine tree from preorder and postorder Suppose inorder is **BCAED** preorder is A B C D E The root is A. Left subtree contains B C Right subtree contains E D Now figure out left, right subtrees using the same method. From the above: For left subtree For right subtree: inorder is: **BC** inorder is: ED preorder is: BC preorder is: DE root is: B root is: D left subtree: E Right subtree: C



Grammars Grammars The cat ate the rat. A grammar is a set of rules for generating The cat ate the rat slowly. the valid strings of a language. The small cat ate the big rat slowly. Read \rightarrow as "may The small cat ate the big rat on the mat slowly. Sentence \rightarrow Noun Verb Noun be composed of" The small cat that sat in the hat ate the big rat Noun \rightarrow goats on the mat slowly, then got sick. Noun \rightarrow astrophysics Noun \rightarrow bunnies Not all sequences of words are sentences: Verb \rightarrow like The ate cat rat the Verb \rightarrow see How many legal sentences are there? How many legal Java programs are there? □ How can we check whether a string is a Java program?




the valid s	ar is a set of rules for generating trings of a language. \rightarrow Noun Verb Noun	
Noun	,	
Noun		
	\rightarrow bunnies	Noun Verb Noun
Noun		
Noun Verb	\rightarrow like	


Gra	mmars			
A grammar is a set of rules for generating the valid strings of a language.				
Sentence	\rightarrow Noun Verb Noun			
Noun	\rightarrow goats			
Noun	\rightarrow astrophysics	1		
Noun	\rightarrow bunnies	bunnies Verb Noun		
Verb	\rightarrow like			
Verb	\rightarrow see			

Grammars						
A grammar is a set of rules for generating the valid strings of a language.						
Sentence	\rightarrow Noun Verb Noun					
Noun	\rightarrow goats					
Noun	→ astrophysics	1 1 11 4 1 1				
Noun	\rightarrow bunnies	bunnies like astrophysics				
Verb	\rightarrow like					
Verb	\rightarrow see					

Grammar for simple expressions (not the best)				
35 $E \rightarrow \text{integer}$ $E \rightarrow (E + E)$ Simple expressions: • An E can be an integer. • An E can be a 't followed by on E	Some legal expressions: • 2 • (3 + 34) • ((4+23) + 89)			
 An E can be '(' followed by an E followed by '+' followed by an E followed by ')' 	Some illegal expressions: (3			
 Set of expressions defined by this grammar is a recursively-defined set Is language finite or infinite? Do recursive grammars always yield infinite languages? 	 3 + 4 <i>Tokens</i> of this grammar: (+) and any integer 			