

TREES

Lecture 12 CS2110 – Fall 2018

Prelim Updates

- 2
- Regrades are live until next Thursday @ 11:59PM
- A few rubric changes are happening
 - Recursion question: -Opts if you continued to print
 - Exception handling "write the output of execution of that statement" – rubrics change in place

Data Structures

- There are different ways of storing data, called data structures
- Each data structure has operations that it is good at and operations that it is bad at
- □ For any application, you want to choose a data structure that is good at the things you do often

Example Data Structures

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
$ \begin{array}{c} \text{Linked List} \\ \hline 2 \rightarrow 1 \rightarrow 3 \rightarrow 0 \end{array} $	0(1)	O(n)	O(n)

add(v): append v to this list
get(i): return element at position i in this list
contains(v): return true if this list contains v

AKA add, lookup, search

Tree

5

Tree Overview

6

Tree: data structure with nodes, similar to linked list

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

Tree Terminology (1)

the leaves of the tree (no children)

Tree Terminology (2)

Tree Terminology (3)

Tree Terminology (4)

10

A node's **depth** is the length of the path to the root.

A tree's (or subtree's) *height* is the length of the longest path from the root to a leaf.

Tree Terminology (5)

Multiple trees: a forest

Class for general tree nodes

Class for general tree nodes

Binary Trees

A binary tree is a particularly important kind of tree in which every node as at most two children.

In a binary tree, the two children are called the *left* and *right* children.

Not a binary tree (a *general* tree)

Binary tree

Binary trees were in A1!

```
You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the "children".)
```


Useful facts about binary trees

Max # of nodes at depth d: 2^d

```
If height of tree is h:

min # of nodes: h + 1

max #of nodes:

2^0 + \dots + 2^h = 2^{h+1} - 1
```


Complete binary tree

Every level, except last, is completely filled, nodes on bottom level as far left as possible. No holes.

Class for binary tree node

Binary versus general tree

In a binary tree, each node has up to two pointers: to the left subtree and to the right subtree:

One or both could be **null**, meaning the subtree is empty (remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes (and they need not be ordered)

- Very useful in some situations ...
- ... one of which may be in an assignment!

A Tree is a Recursive Thing

A binary tree is either null or an object consisting of a value, a left binary tree, and a right binary tree.

A Recipe for Recursive Functions

Base case:

If the input is "easy," just solve the problem directly.

Recursive case:

Get a smaller part of the input (or several parts). Call the function on the smaller value(s).

Use the recursive result to build a solution for the full input.

A Recipe for Recursive Functions on Binary Trees

Base case: If the input is "Pasy," just solve the problem directly.

Recursive case:

Get a smaller part of the input (or several parts). Call the function on the smaller value(s). each subtree Use the recursive result to build a solution for the full input.

Searching in a Binary Tree


```
/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {
    if (t == null) return false;
    if (x.equals(t.datum)) return true;
    return treeSearch(x, t.left) || treeSearch(x, t.right);
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

We sometimes talk of the root of the tree, **t**. But we also use **t** to denote the whole tree.

Comparing Data Structures

Data Structure	add(val v)	get(int i)	contains(val v)
Array 2 1 3 0	O(n)	0(1)	O(n)
Linked List $(2 \rightarrow 1 \rightarrow 3 \rightarrow 0)$	0(1)	O(n)	O(n)
Binary Tree 2 1 3	0(1)	0(n)	0(n)

Index set by pre-determined traversal order (see slide 36); have to go through the whole tree (no short cut like array indexing) Node you seek could be anywhere in the tree; have to search the whole thing.

Binary Search Tree (BST)

28

A binary search tree is a binary tree that is **ordered** and **has no duplicate values**. In other words, for every node:

- All nodes in the left subtree have values that are less than the value in that node, and
- All values in the right subtree are greater.

A BST is the key to making search way faster.

To insert a new item:

- Pretend to look for the item
- Put the new node in the place where you fall off the tree

30

insert: January

Note: Inserting them *chronologically*, (January, then February...) but the BST places them alphabetically (Feb comes before Jan, etc.)

31

insert: February

34

Printing contents of BST

```
/** Print BST t in alpha order */
private static void
print(TreeNode<T> t) {
    if (t == null) return;
    print(t.left);
    System.out.print(t.value);
    print(t.right);
}
```

Because of ordering rules for BST, easy to print alphabetically

- Recursively print left subtree
- Print the root
- Recursively print right subtree

Tree traversals

- "Walking" over the whole tree is a tree traversal
 - Done often enough that there are standard names

Previous example: in-order traversal

- Process left subtree
- Process root
- Process right subtree

Note: Can do other processing besides printing

Other standard kinds of traversals **preorder** traversal

- Process root
- Process left subtree
- Process right subtree
- postorder traversal
 - Process left subtree
 - Process right subtree
 - Process root
- level-order traversal
 - Not recursive: uses a queue (we'll cover this later)

Binary Search Tree (BST)

Compare binary tree to binary search tree:

```
boolean searchBT(n, v):
  if n == null, return false
  if n.v == v, return true
  return searchBT(n.left, v)
    || searchBT(n.right, v)
    else
    return searchBST(n.right, v)
boolean searchBST(n, v):
  if n == null, return false
  if n.v == v, return true
  if v < n.v
  return searchBST(n.left, v)
  else
  return searchBST(n.right, v)
```

2 recursive calls

1 recursive call

Comparing Data Structures

Data Structure	add(val x)	get(int i)	contains(val x)
Array 2 1 3 0	O(n)	0(1)	O(n)
$ \underbrace{2 \rightarrow 1 \rightarrow 3 \rightarrow 0} $	0(1)	O(n)	O(n)
Binary Tree 1 2 3	0(1)	O(n)	O(n)
BST 2 (1) 3	0(depth)	0(depth)	0(depth)

Inserting in Alphabetical Order

Inserting in Alphabetical Order

Inserting in Alphabetical Order

Insertion Order Matters

- 42
- A balanced binary tree is one where the two subtrees of any node are about the same size.
- Searching a binary search tree takes O(h) time, where h is the height of the tree.
- □ In a balanced binary search tree, this is O(log n).
- But if you insert data in sorted order, the tree becomes imbalanced, so searching is O(n).

Things to think about

What if we want to delete data from a BST?

A BST works great as long as it's balanced.

There are kinds of trees that can automatically keep themselves balanced as things are inserted!

