
TREES
Lecture 12
CS2110 – Fall 2018

Prelim Updates

¨ Regrades are live until next Thursday @ 11:59PM
¨ A few rubric changes are happening

¤ Recursion question: -0pts if you continued to print
¤ Exception handling “write the output of execution of

that statement” – rubrics change in place

2

Data Structures

¨ There are different ways of storing data, called
data structures

¨ Each data structure has operations that it is good at
and operations that it is bad at

¨ For any application, you want to choose a data
structure that is good at the things you do often

3

Example Data Structures

Data Structure add(val v) get(int i)

Array

Linked List

4

2 1 3 0

2 1 3 0

!(#) !(1)

!(#)!(1)

add(v): append v to this list
get(i): return element at position i in this list
contains(v): return true if this list contains v

AKA add, lookup, search

contains(val v)

!(#)

!(#)

Tree
5

Singly linked list:

2 1 1 0Node
object

pointerint value

Today: trees!

0

4 1 1 0

2

1

1

Tree Overview
6

Tree: data structure with
nodes, similar to linked list
¤ Each node may have zero or

more successors (children)
¤ Each node has exactly one
predecessor (parent) except
the root, which has none

¤ All nodes are reachable
from root

A tree Not a tree

Not a tree A tree

5

4 2

7 8 9

5

4 2

7 8 9

5

6

7

5

4

7 8

A tree or not a tree?

Tree Terminology (1)
7

M

G W

PJD

NHB S

the root of the tree
(no parents)

the leaves of the tree
(no children)

child of M child of M

Tree Terminology (2)
8

M

G W

PJD

NHB S

descendants
of W

ancestors of B

Tree Terminology (3)
9

subtree of M
M

G W

PJD

NHB S

Tree Terminology (4)
10

A node’s depth is the length of the path to the root.
A tree’s (or subtree’s) height is the length of the longest
path from the root to a leaf.

depth 3

M

G W

PJD

NHB S

depth 1

height 0

height 2

Tree Terminology (5)
11

Multiple trees: a forest

G W

PJD

NHB S

Class for general tree nodes

12

class GTreeNode<T> {
private T value;
private List<GTreeNode<T>> children;
//appropriate constructors, getters,
//setters, etc.

}

General
tree

<T> means user picks a type when
they create one (later lecture)

Parent contains a list of its children

5

4 2

987

3 87 1

class GTreeNode<T> {
private T value;
private List<GTreeNode<T>> children;
//appropriate constructors, getters,
//setters, etc.

}

Class for general tree nodes

13

Java.util.List is an interface!
It defines the methods that all
implementations must implement.
Whoever writes this class gets to
decide what implementation to use —
ArrayList? LinkedList? Etc.?

General
tree

5

4 2

987

3 87 1

Binary Trees
14

A binary tree is a
particularly important
kind of tree in which
every node as at most
two children.

In a binary tree, the two
children are called the
left and right children.

Not a binary tree
(a general tree) Binary tree

5

4 2

7 8 9

5

4 2

7 9

Binary trees were in A1!

You have seen a binary tree in A1.
A PhD object has one or two advisors.
(Note: the advisors are the “children”.)

15

David Gries

Friedrich Bauer

Georg AumannFritz Bopp

Fritz Sauter Erwin Fues Heinrich Tietze Constantin Carathodory

Useful facts about binary trees
16

Max # of nodes at depth d: 2d

If height of tree is h:
min # of nodes: h + 1
max #of nodes:
20 + … + 2h = 2h+1 – 1

depth
0

1

2
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

2

9 0

8 3 5

2

0

5

Complete binary tree
Every level, except last,
is completely filled,
nodes on bottom level
as far left as possible.
No holes.

Class for binary tree node
17

class TreeNode<T> {

private T datum;

private TreeNode<T> left, right;

/** Constructor: one-node tree with datum d */

public TreeNode (T d) {datum= d; left= null; right= null;}

/** Constr: Tree with root datum d, left tree l, right tree r */

public TreeNode (T d, TreeNode<T> l, TreeNode<T> r) {

datum= d; left= l; right= r;

}

// more methods: getValue, setValue, getLeft, setLeft, etc.

}

Either might be null if
the subtree is empty.

Binary versus general tree

In a binary tree, each node has up to two pointers: to the left
subtree and to the right subtree:

¤ One or both could be null, meaning the subtree is empty
(remember, a tree is a set of nodes)

In a general tree, a node can have any number of child nodes
(and they need not be ordered)

¤ Very useful in some situations ...
¤ ... one of which may be in an assignment!

18

A Tree is a Recursive Thing
19

A binary tree is either null or an object consisting of a value,
a left binary tree, and a right binary tree.

Looking at trees recursively

Binary
Tree

Left subtree,
which is also a
binary tree

Right subtree
(also a binary tree)

2

9 0

8 3 5 7

Looking at trees recursively

a binary tree

Looking at trees recursively

value

left
subtree

right
subtree

Looking at trees recursively

value

24

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

A Recipe for Recursive Functions

A Recipe for Recursive Functions on Binary Trees
25

Base case:
If the input is “easy,” just solve the problem directly.

Recursive case:
Get a smaller part of the input (or several parts).
Call the function on the smaller value(s).
Use the recursive result to build a solution for the full input.

an empty tree (null), or possibly a leaf

each subtree

Searching in a Binary Tree
26

/** Return true iff x is the datum in a node of tree t*/
public static boolean treeSearch(T x, TreeNode<T> t) {

if (t == null) return false;
if (x.equals(t.datum)) return true;
return treeSearch(x, t.left) || treeSearch(x, t.right);

}

� Analog of linear search in lists: given tree and
an object, find out if object is stored in tree

� Easy to write recursively, harder to write
iteratively

2

9 0

8 3 5 7We sometimes talk of the root of the tree, t.
But we also use t to denote the whole tree.

Binary Tree

Comparing Data Structures

Data Structure add(val v) get(int i)

Array

Linked List

27

2 1 3 0

2 1 3 0

!(#) !(1)

!(#)!(1)

contains(val v)

!(#)

!(#)
2

1 3
!(1) !(#) !(#)

Index set by pre-determined
traversal order (see slide 36);

have to go through the whole tree
(no short cut like array indexing)

Node you seek
could be anywhere

in the tree;
have to search the

whole thing.

>5<5

Binary Search Tree (BST)
28

A binary search tree is a binary tree that is ordered and has no
duplicate values. In other words, for every node:

• All nodes in the left subtree have values that are less than the
value in that node, and

• All values in the right subtree are greater.

A BST is the key to making search way faster.

5

2 8

0 3 7 9

Building a BST
29

To insert a new item:
¤ Pretend to look for the item
¤ Put the new node in the place

where you fall off the tree

Building a BST
30

insert: January

Note: Inserting them chronologically, (January, then
February…) but the BST places them alphabetically (Feb
comes before Jan, etc.)

Building a BST
31

january

insert: February

Building a BST
32

january

february

insert: March

Building a BST
33

january

february march

insert: April

Building a BST
34

january

february march

april mayjune

julyaugust september

october

november

december

Printing contents of BST
35

Because of ordering rules for BST, easy to print alphabetically
¨ Recursively print left subtree

¨ Print the root
¨ Recursively print right subtree

/** Print BST t in alpha order */
private static void
print(TreeNode<T> t) {

if (t == null) return;
print(t.left);
System.out.print(t.value);
print(t.right);

}

Tree traversals

�Walking� over the whole tree
is a tree traversal

¤ Done often enough that
there are standard names

Previous example:
in-order traversal

nProcess left subtree
nProcess root
nProcess right subtree

Note: Can do other processing
besides printing

Other standard kinds of traversals
§preorder traversal

wProcess root
wProcess left subtree
wProcess right subtree

§postorder traversal
wProcess left subtree
wProcess right subtree
wProcess root

§level-order traversal
wNot recursive: uses a queue

(we’ll cover this later)

36

Binary Search Tree (BST)
37

boolean searchBST(n, v):
if n == null, return false
if n.v == v, return true
if v < n.v

return searchBST(n.left, v)
else

return searchBST(n.right, v)

boolean searchBT(n, v):
if n == null, return false
if n.v == v, return true
return searchBT(n.left, v)

|| searchBT(n.right, v)

Compare binary tree to binary search tree:

2 recursive calls 1 recursive call

5

2 8

0 3 7 9

Binary Tree

BST

Comparing Data Structures

Data Structure add(val x) get(int i)

Array

Linked List

38

2 1 3 0

2 1 3 0

!(#) !(1)

!(#)!(1)

contains(val x)

!(#)

!(#)
1

2 3
!(1) !(#) !(#)

2
1 3

!(&'()ℎ) !(&'()ℎ) !(&'()ℎ)

Inserting in Alphabetical Order
39

april

Inserting in Alphabetical Order
40

april

august

Inserting in Alphabetical Order
41

april

august

december

february

january

Insertion Order Matters

¨ A balanced binary tree is one where the two
subtrees of any node are about the same size.

¨ Searching a binary search tree takes O(h) time,
where h is the height of the tree.

¨ In a balanced binary search tree, this is O(log n).
¨ But if you insert data in sorted order, the tree

becomes imbalanced, so searching is O(n).

42

Things to think about
43

What if we want to delete
data from a BST?

A BST works great as long as
it’s balanced.
There are kinds of trees that
can automatically keep
themselves balanced as things
are inserted!

jan

feb mar

apr mayjun

jul

