

Prelim 1

- Tonight!!!!
\square Two Sessions:
\square You should know by now what room to take the final. Jenna emailed you.
Bring your Cornell ID!!!
\square We will grade this evening, and if everything works out well, you will receive an email in early morning from Gradescope telling you to look at your grade.

Prelim 1
\square Recitation 5. next week:
Enums and Java Collections classes.
Nothing to prepare for it!

But get A3 done. \square

Some Sorting Algorithms

\square Insertion sort
\square Selection sort
\square Quick sort
\square Merge sort

Why Sorting?

\square Sorting is useful

- Database indexing
\square Operations research
- Compression
\square There are lots of ways to sort
- There isn't one right answer
- You need to be able to figure out the options and decide which one is right for your application.
\square Today, we'll learn several different algorithms (and how to develop them)

Some Sorting Algorithms
\square Insertion sort
Selection sort
Quick sort

Insertion Sort

Insertion Sort	
-	
$\left\{\begin{array}{l}\text { // sort } \mathrm{b}[] \text {, an array of int } \\ \text { // inv: } \mathrm{b}[0 . . \mathrm{i}-1] \text { is sorted } \\ \text { for (int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{b} . \text { length; } \mathrm{i}=\mathrm{i}+1)\{ \\ \quad / / \text { Push } \mathrm{b}[\mathrm{i}] \text { down to its sorted } \\ \quad / / \text { position in } \mathrm{b}[0 . . \mathrm{i}]\}\end{array}\right.$	Let $\mathrm{n}=\mathrm{b}$.length - Worst-case: O(n^{2}) (reverse-sorted input)
Pushing $\mathrm{b}[\mathrm{i}]$ down can take i swaps. Worst case takes $1+2+3+\ldots \mathrm{n}-1=(\mathrm{n}-1) * \mathrm{n} / 2$ swaps.	- Best-case: O(n) (sorted input) - Expected case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

SelectionSort

Keep invariant true while making progress?

Increasing i by 1 keeps inv true only if $\mathrm{b}[\mathrm{i}]$ is \min of $\mathrm{b}[\mathrm{i} .$.

QuickSort

Quicksort developed by Sir Tony Hoare (he was knighted by the Queen of England for his contributions to education and CS).
84 years old.
Developed Quicksort in 1958. But he could not explain it to his colleague, so he gave up on it.

Later, he saw a draft of the new language Algol 58 (which became Algol 60). It had recursive procedures. First time in a procedural programming language. "Ah!," he said. "I know how to write it better now." 15 minutes later, his colleague also understood it.

Partition algorithm of quicksort

so the "?" segment is
empty, so diagram
looks like result
diagram
QuickSort procedure
/** Sort b[h..k]. */
public static void $\mathrm{QS}($ int[] b, int h , int k) \{
if (b[h..k] has <2 elements) return; Base case
int $\mathrm{j}=\operatorname{partition}(\mathrm{b}, \mathrm{h}, \mathrm{k})$;
// We know $\mathrm{b}[\mathrm{h} . \mathrm{j}-1]<=\mathrm{b}[\mathrm{j}]<=\mathrm{b}[\mathrm{j}+1 . \mathrm{k}]$
$/ /$ Sort $\mathrm{b}[\mathrm{h} . \mathrm{j}-1]$ and $\mathrm{b}[\mathrm{j}+1 . . \mathrm{k}] \quad$ Function does the
QS(b, h, j-1); partition algorithm and
QS(b, $\mathrm{j}+1, \mathrm{k})$; returns position j of pivot
\}

0				depth 0.1 segment of size $\sim \mathrm{n}$ to partition.
$<=\mathrm{x}$	- $\mathrm{x} 0 \mid$			
$<=\mathrm{x} 1$ x 1	$>=\mathrm{x} 1 \times \mathrm{x} 0$	 0	$>=x 2$	Depth 2.2 segments of size $\sim \mathrm{n} / 2$ to partition. Depth 3.4 segments of size $\sim n / 4$ to partition.

Max depth: $\mathrm{O}(\log \mathrm{n})$. Time to partition on each level: $\mathrm{O}(\mathrm{n})$ Total time: $O(n \log n)$.

Average time for Quicksort: $\mathrm{n} \log \mathrm{n}$. Difficult calculation

	Performance				
27					
	Algorihm	Ave time. Wo	-case fime	Space	Stable?
	Insertion sort	$O\left(n^{2}\right)$.	$O\left(n^{2}\right)$	$O(1)$	Yes
	Selection sort	$O\left(n^{2}\right)$.	$O\left(n^{2}\right)$	O (1)	No
	Quick sort	$O(n \log n)$	$O\left(n^{2}\right)$	O(logn)*	No
	Merge sort				
	* The first algorithm we developed takes space $\mathrm{O}(\mathrm{n})$ in the worst case, but it can be reduced to $\mathrm{O}(\log \mathrm{n})$				

Partition. Key issue. How to choose pivot

Choosing pivot
Ideal pivot: the median,
since it splits array in half
But computing the median is
$\mathrm{O}(\mathrm{n})$, quite complicated
Popular heuristics: Use

- first array value (not so good)
- middle array value (not so good)
- Choose a random element (not so good)
- median of first, middle, last, values (often used)!

QuickSort versus MergeSort

/** Sort b[h..k] */
/** Sort b[h..k] */
public static void QS
public static void QS
(int[] b, int h, int k) {
(int[] b, int h, int k) {
if (k-h<1) return;
if (k-h<1) return;
int j= partition(b, h, k);
int j= partition(b, h, k);
QS(b, h, j-1);
QS(b, h, j-1);
QS(b, j+1, k);
QS(b, j+1, k);
}
}
/** Sort b[h..k] */
public static void MS
(int[] b, int h, int k) \{
if $(\mathrm{k}-\mathrm{h}<1)$ return;
$\operatorname{MS}(\mathrm{b}, \mathrm{h},(\mathrm{h}+\mathrm{k}) / 2)$;
$\operatorname{MS}(\mathrm{b},(\mathrm{h}+\mathrm{k}) / 2+1, \mathrm{k})$;
merge(b, h, (h+k)/2, k);
\}

One processes the array then recurses.
One recurses then processes the array.

Sorting in Java

\square Java.util.Arrays has a method sort(array)
\square implemented as a collection of overloaded methods
\square for primitives, sort is implemented with a version of quicksort
\square for Objects that implement Comparable, sort is implemented with timSort, a modified mergesort developed in 1993 by Tim Peters
\square Tradeoff between speed/space and stability/performance guarantees

