

O() Examples			
Let $f(n) = 3n^2 + 6n - 7$ f(n) is $O(n^2)$ f(n) is $O(n^3)$ f(n) is $O(n^4)$ p(n) = 4 n log n + 34 n - 89 p(n) is $O(n \log n)$ p(n) is $O(n^2)$ h(n) = $20 \cdot 2^n + 40n$ h(n) is $O(2^n)$ a(n) = 34 a(n) is $O(1)$	Only the <i>leading</i> term (the term that grows most rapidly) matters If it's O(n ²), it's also O(n ³) etc! However, we always use the smallest one		

Do NOT say or write $f(n) = O(g(n))$
17
Formal definition: $f(n)$ is $O(g(n))$ if there exist constants $c \ge 0$ and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$
f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.
Here's an example to show what happens when we use = this way.
We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use =
n+2 = O(n)
n+3 = O(n)
But then, by transitivity of equality, we have $n+2 = n+3$.
We have proved something that is false. Not good.

		Problem-siz	e examples				
18	Suppose a computer can execute 1000 operations per second; how large a problem can we solve?						
	operations	1 second	1 minute	1 hour			
	n	1000	60,000	3,600,000			
	n log n	140	4893	200,000			
	n ²	31	244	1897			
	3n ²	18	144	1096			
	n ³	10	39	153			
	2 ⁿ	9	15	21			

	-	
O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	maybe OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

