

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better? \square Faster?
\square Less space?
Easier to code?
\square Easier to maintain?

- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Prelim Thursday evening

Sorry about the Sunday review session mixup.
This week's recitation: review for prelim. Slides are posted on the pinned Piazza note Recitations/Homeworks.

You now know what time time you will take it.
We will announce rooms later, on Thursday.

It has been a nightmare for our admin, Jenna.

Bring your Cornell ID card.
We will scan them as you enter the room.
Those taking course for AUDIT don't take the prelim

Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
\square do one arithmetic or logical operation
\square method call (not counting arg evaluation and execution of method body)

Not all operations are basic steps		
$\begin{aligned} & \text { // Store } \mathrm{n} \text { copies of ' } \mathrm{c} \text { ' in } \mathrm{s} \\ & \mathrm{~s}=\text { ""'; } \\ & \text { // inv: } \mathrm{s} \text { contains } \mathrm{k}-1 \text { copies of ' } \mathrm{c} \text { ' } \\ & \text { for (int } \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1)\{ \\ & \mathrm{s}=\mathrm{s}+\mathrm{I}^{\prime} \mathrm{c} \text { '; } \\ & \} \end{aligned}$	$\begin{aligned} & \hline \text { Statement: } \\ & \hline \mathrm{s}=\mathrm{"N} ; \\ & \mathrm{k}=1 ; \\ & \mathrm{k}<=\mathrm{n} \\ & \mathrm{k}=\mathrm{k}+1 ; \\ & \mathrm{s}=\mathrm{s}+\mathrm{s}^{\prime} \mathrm{c} \text { '; } \\ & \hline \text { Total steps: } \\ & \hline \end{aligned}$	\#times done 1 1 $n+1$ n $\frac{n}{3 n+3}$
Catenation is not a basic step. For each k, catenation creates and fills k array elements.		

$$
\text { Prove that }\left(2 n^{2}+n\right) \text { is } O\left(n^{2}\right)
$$

Formal definition: $f(n)$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$
and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

Methodology:

Start with $\mathrm{f}(\mathrm{n})$ and slowly transform into $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$:
$\square \quad$ Use $=$ and $<=$ and $<$ steps
\square At appropriate point, can choose N to help calculation
\square At appropriate point, can choose c to help calculation

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Example: Prove that $\left(2 n^{2}+n\right)$ is $O\left(n^{2}\right)$

$$
f(n)
$$

$=\quad<$ definition of $f(n)>$ $2 n^{2}+n$
$<=\quad<$ for $n \geq 1, n \leq n^{2}>$
$2 n^{2}+n^{2}$
$=$ <arith>
$=\quad 3^{*} n^{2}$

Choose
$\mathrm{N}=1$ and $\mathrm{c}=3$

Prove that $100 n+\log n$ is $O(n)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$
and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \quad \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
$f(n)$
$=\quad$ <put in what $f(n)$ is>
$100 n+\log n$
$<=\quad<$ We know $\log \mathrm{n} \leq \mathrm{n}$ for $\mathrm{n} \geq 1>$
$100 n+n$
$=\quad<$ arith>
Choose
$\mathrm{N}=1$ and $\mathrm{c}=101$
101 n
$<\mathrm{g}(\mathrm{n})=\mathrm{n}>$
$101 \mathrm{~g}(\mathrm{n})$

O(...) Examples

Let $\mathrm{f}(\mathrm{n})=3 \mathrm{n}^{2}+6 \mathrm{n}-7$
$\square f(n)$ is $O\left(n^{2}\right)$
Only the leading term (the
$\square f(n)$ is $O\left(n^{3}\right)$ term that grows most
$\square f(n)$ is $O\left(n^{4}\right) \quad$ rapidly) matters
ㅁ...
$p(n)=4 n \log n+34 n-89$
$\square p(n)$ is $O(n \log n)$

- $p(n)$ is $O\left(n^{2}\right)$
$h(n)=20 \cdot 2^{n}+40 n$
If it's $O\left(n^{2}\right)$, it's also $O\left(n^{3}\right)$
etc! However, we always use the smallest one
$h(n)$ is $O\left(2^{n}\right)$
$a(n)=34$
$\square a(n)$ is $O(1)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.

Here's an example to show what happens when we use = this way.
We know that $n+2$ is $O(n)$ and $n+3$ is $O(n)$. Suppose we use $=$

$$
\begin{aligned}
& \mathrm{n}+2=\mathrm{O}(\mathrm{n}) \\
& \mathrm{n}+3=\mathrm{O}(\mathrm{n})
\end{aligned}
$$

But then, by transitivity of equality, we have $\mathrm{n}+2=\mathrm{n}+3$.
We have proved something that is false. Not good.

Problem-size examples
\square Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

operations	1 second	1 minute	1 hour
n	1000	60,000	$3,600,000$
$\mathrm{n} \log \mathrm{n}$	140	4893	200,000
n^{2}	31	244	1897
$3 \mathrm{n}^{2}$	18	144	1096
n^{3}	10	39	153
2^{n}	9	15	21

Commonly Seen Time Bounds		
O(1)	constant	excellent
O(log n)	logarithmic	excellent
$\mathrm{O}(\mathrm{n})$	linear	good
$\mathrm{O}(\mathrm{l} \log \mathrm{n})$	$n \log n$	pretty good
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	quadratic	maybe OK
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	cubic	maybe OK
$\mathrm{O}\left(2^{\text {² }}\right.$)	exponential	too slow

Search for v in $\mathrm{b}[0 .$.

Binary search for v in sorted b[0..]				
25$/ / \mathrm{b}$ is sorted. Store in i a value to truthify R :$/ / \quad \mathrm{b}[0 . \mathrm{i}]<=\mathrm{v}<\mathrm{b}[\mathrm{i}+1 .$.				
$\begin{array}{llll} 0 & \mathrm{i} & \mathrm{e} & \mathrm{k} \\ \hline \end{array}$				
$\leq v$ $\leq v$ $>v$				

Binary search for v in sorted $\mathrm{b}[\mathrm{O} .]$			

Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of $\mathrm{b}[0 . \mathrm{n}-1]$ to truthify postcondition R :

Dutch National Flag Algorithm

Dutch National Flag Algorithm

\|Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of $\mathrm{b}[0 . \mathrm{n}-1]$ to truthify postcondition R :

Suppose we use invariant P2.

What does the repetend do?
At most one swap per iteration

Compare algorithms without writing code!

Dutch National Flag Algorithm: invariant P2

Asymptotically, which algorithm is faster?

