

five items

> Note: We've covered almost everything in Java! Just a few more things, which will be covered from time to time.

Remember to look at the exams page of course website and, if necessary, complete P1Conflict on
CMS or email Jenna by THURSDAY NIGHT

> Al grades are available. PLEASE READ YOUR FEEDBACK!

> Mean: 93.9
> Median: 97

Recursion: Look at Java Hypertext entry "recursion".

Note: Remember to do the tutorial for this week's recitation. It is really important that you master this material.

About A3. linked list data structure

This is a linked list containing the list of integers $(6,7,3)$.
header, containing size
of list and pointer to first node

Each node (N@1, N@8, N@2) contains a value of the list and a pointer to next node (null if none)

Why use linked list? Can insert a value at beginning of list with just a few instructions ---constant time

A3 introduces generics

Generic programming: a style of computer programming in which algorithms are written in terms of types to be specified later, which are then instantiated when needed for specific types .

A3 introduces generics

/** An instance maintains a set of some max size. */ public class TimeSet $<\mathbf{E}>\{/ / \mathbb{E}$ is a type parameter private Entry[] s; // The set elements are in s[0..n-1] private int n ; // size of set.
new TimeSet(10)
new TimeSet $<$ String $>$ (10)
This set can contain any
values, e.g. $\{6$, 'xy", $5.2, ~ ' a '\}$
This set can contain only
Strings, e.g. \{"xy","a"\}

A3 introduces generics

/** An instance maintains a set of some max size. */ public class TimeSet $<\mathrm{E}>\{/ / \mathrm{E}$ is a type parameter private Entry[] s; // The set elements are in s[0..n-1] private int n ; // size of set.

A3 introduces inner classes

/** An instance represents a linked list ... */ public class TimeSet $<\mathbf{E}>\{/ / \mathbb{E}$ is a type parameter private Node first; // first node of list (null if size 0) private int size; // Number of values.
/** An instance holds an E element. */
private class Entry \{
private \mathbb{E} val; // the element of type \mathbf{E} private long t ; // the time at which entry was created.

Note how type parameter E is used

To Understand Recursion...

Recursion - Real Life Examples

<noun phrase> is <noun>, or

$$
\begin{aligned}
& \text { <adjective> <noun phrase>, or } \\
& \text { <adverb> <noun phrase> }
\end{aligned}
$$

Example:
terrible horrible no-good very bad day

Recursion - Real Life Examples

<noun phrase> is <noun>, or
<adjective> <noun phrase>, or <adverb> <noun phrase> ancestor (p) is parent (p), or parent(ancestor(p))
great $0!=1$ great great grandmother.
$\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)!$
$1,1,2,6,24,120,720,5050,40320,362880,3628800,39916800$, 479001600...

Sum the digits in a non-negative integer

```
/** = sum of digits in n.
    * Precondition: n >= 0 */
public static int sum(int n) {
        if (n<10) return n;
    sum calls itself!
    // {n has at least two digits }
    // return first digit + sumn of rest
    return n%10 + sum(n/10);
}
```

$$
\begin{aligned}
\operatorname{sum}(7)=7 \\
\begin{aligned}
\operatorname{sum}(8703) & =3+\operatorname{sum}(870) \\
& =3+8+\operatorname{sum}(70) \\
& =3+8+7+\operatorname{sum}(0)
\end{aligned}
\end{aligned}
$$

Two different questions, two different answers

1. How is it executed?
(or, why does this even work?)
2. How do we understand recursive methods?
(or, how do we write/develop recursive methods?)

Stacks and Queues

stack grows

top element
2nd element

\ldots
bottom element

first second ... last

Americans wait in a line. The Brits wait in a queue!

Stack: list with (at least) two basic ops:

* Push an element onto its top
* Pop (remove) top element

Last-In-First-Out (LIFO)
Like a stack of trays in a cafeteria

Queue: list with (at least) two basic ops:

* Append an element
* Remove first element

First-In-First-Out (FIFO)

Stack Frame

A "frame" contains information about a method call:

At runtime Java maintains a stack that contains frames for all method calls that are being executed but have not completed.
local variables

parameters

return info

Method call: push a frame for call on stack. Assign argument values to parameters. Execute method body. Use the frame for the call to reference local variables and parameters.

End of method call: pop its frame from the stack; if it is a function leave the return value on top of stack.

Memorize method call execution!

A frame for a call contains parameters, local variables, and other information needed to properly execute a method call.

To execute a method call:

1. push a frame for the call on the stack,
2. assign argument values to parameters,
3. execute method body,
4. pop frame for call from stack, and (for a function) push returned value on stack

When executing method body look in frame for call for parameters and local variables.

Frames for methods sum main method in the system

```
public static int sum(int n) {
    if (n<10) return n;
    return n%10 + sum(n/10);
```

\}
public static void main(
String[] args) \{
int r= sum(824);
System.out.println(r);
\}

Frame for method in the system that calls method main

n
 \qquad return info

frame:

r ___ args
 \qquad return info

?

frame:
return info

Example: Sum the digits in a non-negative integer
public static int sum(int n) \{
if $(\mathrm{n}<10)$ return n ;
return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
public static void main(String[] args) \{
int $\mathrm{r}=\operatorname{sum}(824)$;
System.out.println(r);

Frame for method in the system that calls method main: main is then called

r return info
reargs
$?$
return info

Memorize method call execution!

To execute a method call:

1. push a frame for the call on the stack,
2. assign argument values to parameters,
3. execute method body,
4. pop frame for call from stack, and (for a function) push returned value on stack

The following slides step through execution of a recursive call to demo execution of a method call.

Here, we demo using: www.pythontutor.com/visualize.html
Caution: the frame shows not ALL local variables but only those whose scope has been entered and not left.

Example: Sum the digits in a non-negative integer
public static int sum(int n) \{
if ($\mathrm{n}<10$) return n ;
return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
\}
public static void main(
String[] args) \{
int $\mathrm{r}=\operatorname{sum}(824)$;
System.out.println(r);

Method main calls sum:
system

$n \underline{824}$
return info
return info retus $?$ return info${ }^{2}$

Example: Sum the digits in a non-negative integer
public static int sum(int n) \{
if $(\mathrm{n}<10)$ return n ;
return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
public static void main(
String[] args) \{
int $\mathrm{r}=\mathrm{sum}(824)$;
System.out.println(r);
$\mathrm{n}>=10$ sum calls sum:

$$
{ }_{\text {neturn info }}^{82}
$$

n 824
return info
$r_{\text {___ }}$ args return info
system

n $\quad 82$ return info
n 824 return info
r \qquad args return info
? return info

Example: Sum the digits in a non-negative integer

public static int sum(int n) \{ if $(\mathrm{n}<10)$ return n ; return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;	main	$\mathrm{n} \frac{8}{\text { return info }}$
public static void main(String[] args) \{ int $\mathrm{r}=\operatorname{sum}(824)$; System.out.println(r); \}		$\mathrm{n} \underline{82}$ return info
		n 824 return info
		\qquad args return info
$n>=10$. sum calls sum:	system	? return info

Example: Sum the digits in a non-negative integer

23

public static int sum(int n) \{
if $(\mathrm{n}<10)$ return n ;
return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
public static void main(
String[] args) \{
int $\mathrm{r}=\mathrm{sum}(824)$;
System.out.println(r);
$\}$
$\mathrm{n}<10$ sum stops: frame is popped and n is put on stack:
n 8
retu8n info
n 82
return info
n 824
return info
$r_{\text {___ }}$ args return info
system

$\mathrm{n} \underline{8}$ retu8n info
$\mathrm{n} \underline{82}$ return info
n 824 return info
$\mathrm{r} _$args return info
$?$ return info

Example: Sum the digits in a non-negative integer
public static int sum(int n) \{
if $(\mathrm{n}<10)$ return n ; return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
public static void main(
String[] args) \{
int $\mathrm{r}=\operatorname{sum}(824)$;
System.out.println(r);

Using return value 8 stack computes $2+8=10$ pops frame from stack puts return value 10 on stack

Example: Sum the digits in a non-negative integer

```
public static int sum(int n) \{
    if \((\mathrm{n}<10)\) return n ;
    return \(\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)\);
```

\}
public static void main(
String[] args) \{
int $\mathrm{r}=\operatorname{sum}(824)$;
System.out.println(r);
\}

Using return value 10 stack computes $4+10=14$ pops frame from stack puts return value 14 on stack

	10
main	n $\underline{824}$ retufh info
	r \qquad args return info
	$\begin{gathered} ? \\ \text { return info } \end{gathered}$

Example: Sum the digits in a non-negative integer
public static int sum(int n) \{
if $(\mathrm{n}<10)$ return n ;
return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$;
$\}$
public static void main(
String[] args) \{
int $\mathrm{r}=\operatorname{sum}(824)$;
System.out.println(r);

main \begin{tabular}{|l|}

\hline | r $\frac{14}{} \quad$ args |
| :--- |
| return info |

\hline$?$

return info
\end{tabular}

Poll time!

Two different questions, two different answers

1. How is it executed?
(or, why does this even work?)
It's not magic! Trace the code's execution using the method call algorithm, drawing the stack frames as you go.
Use only to gain understanding / assurance that recursion works.
2. How do we understand recursive methods?
(or, how do we write/develop recursive methods?)
This requires a totally different approach.

Back to Real Life Examples

Factorial function:
$0!=1$
$\mathrm{n}!=\mathrm{n} *(\mathrm{n}-1)!$ for $\mathrm{n}>0$
(e.g.: $4!=4 * 3^{*} 2^{*} 1=24$)

Easy to make math definition into a Java function! public static int fact(int $n)\{$ if $(\mathrm{n}==0)$ return 1 ;
return n * fact(n-1); \}

Exponentiation:
$b^{0}=1$
$b^{c}=b^{*} b^{c-1}$ for $c>0$
public static int $\exp ($ int b, int $c)\{$ if $(\mathrm{c}=0)$ return 1 ;
return b * $\exp (\mathrm{b}, \mathrm{c}-1)$;

How to understand what a call does

Make a copy of the method spec, replacing the parameters of the method by the arguments
spec says that the value of a call equals the sum of the digits of n
sumDigs(654)
sum of digits of $\mathbf{6 5 4}$

Understanding a recursive method

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s): That is, Cases where the parameter is small enough that the result can be computed simply and without recursive calls.

If $\mathrm{n}<10$ then n consists of a single digit.

Looking at the spec we see that that digit is the required sum.

```
/** = sum of the digits of n.
    * Precondition: n >= 0 */
    public static int sumDigs(int n) {
    if (n<10) return n;
    // n has at least two digits
    return n%10 + sumDigs(n/10);
```

\}

Understanding a recursive method

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).

Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it
$/ * *=$ sum of the digits of n.

* Precondition: $\mathrm{n}>=0$ */
public static int sumDigs(int n) \{ if $(\mathrm{n}<10)$ return n ;
$/ / \mathrm{n}$ has at least two digits return $\mathrm{n} \% 10+\operatorname{sumDigs}(\mathrm{n} / 10)$;
does according to the method spec and verify that the correct result is then obtained. return $\mathrm{n} \% 10+\operatorname{sum}(\mathrm{n} / 10)$; return $\mathrm{n} \% 10+($ sum of digits of $\mathrm{n} / 10) ; \quad / /$ e.g. $\mathrm{n}=843$

Understanding a recursive method

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).

Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it
$/ * *=$ sum of the digits of n.

* Precondition: $\mathrm{n}>=0$ */
public static int sumDigs(int n) \{
if $(\mathrm{n}<10)$ return n ;
$/ / \mathrm{n}$ has at least two digits return n\%10 + sumDigs(n/10); does acc. to the spec and verify correctness.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the pars of the method.
$\mathrm{n} / 10<\mathrm{n}$, so it will get smaller until it has one digit

Understanding a recursive method

Step 1. Have a precise spec!
Important! Can't do step 3 without precise spec.
Step 2. Check that the method works in the base case(s).

Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it does according to the spec and verify correctness.

Once you get the hang of it this is what makes recursion easy! This way of thinking is based on math induction which we don't cover in this course.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the parameters of the method

Writing a recursive method

Step 1. Have a precise spec!
Step 2. Write the base case(s): Cases in which no recursive calls are needed. Generally for "small" values of the parameters.

Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions using recursive calls for those smaller problems of the same kind. Done suitably, point 4 (about termination) is automatically satisfied.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the parameters of the method

Two different questions, two different answers

2. How do we understand recursive methods? (or, how do we write/develop recursive methods?)

Step 1. Have a precise spec!
Step 2. Check that the method works in the base case(s).
Step 3. Look at the recursive case(s). In your mind replace each recursive call by what it does according to the spec and verify correctness.

Step 4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the parameters of the method

Examples of writing recursive functions

For the rest of the class we demo writing recursive functions using the approach outlined below. The java file we develop will be placed on the course webpage some time after the lecture.

Step 1. Have a precise spec!
Step 2. Write the base case(s).
Step 3. Look at all other cases. See how to define these cases in terms of smaller problems of the same kind. Then implement those definitions using recursive calls for those smaller problems of the same kind.

Step 4. Make sure recursive calls are "smaller" (no infinite recursion).

Check palindrome-hood

A String palindrome is a String that reads the same backward and forward: isPal("racecar") \rightarrow true isPal("pumpkin") \rightarrow false

A String with at least two characters is a palindrome if
\square (0) its first and last characters are equal and
\square (1) chars between first \& last form a palindrome:

A recursive definition!

- A man a plan a caret a ban a myriad a sum a lac a liar a hoop a pint a catalpa a gas an oil a bird a yell a vat a caw a pax a wag a tax a nay a ram a cap a yam a gay a tsar a wall a car a luger a ward a bin a woman a vassal a wolf a tuna a nit a pall a fret a watt a bay a daub a tan a cab a datum a gall a hat a fag a zap a say a jaw a lay a wet a gallop a tug a trot a trap a tram a torr a caper a top a tonk a toll a ball a fair a sax a minim a tenor a bass a passer a capital a rut an amen a ted a cabal a tang a sun an ass a maw a sag a jam a dam a sub a salt an axon a sail an ad a wadi a radian a room a rood a rip a tad a pariah a revel a reel a reed a pool a plug a pin a peek a parabola a dog a pat a cud a nu a fan a pal a rum a nod an eta a lag an eel a batik a mug a mot a nap a maxim a mood a leek a grub a gob a gel a drab a citadel a total a cedar a tap a gag a rat a manor a bar a gal a cola a pap a yaw a tab a raj a gab a nag a pagan a bag a jar a bat a way a papa a local a gar a baron a mat a rag a gap a tar a decal a tot a led a tic a bard a leg a bog a burg a keel a doom a mix a map an atom a gum a kit a baleen a gala a ten a don a mural a pan a faun a ducat a pagoda a lob a rap a keep a nip a gulp a loop a deer a leer a lever a hair a pad a tapir a door a moor an aid a raid a wad an alias an ox an atlas a bus a madam a jag a saw a mass an anus a gnat a lab a cadet an em a natural a tip a caress a pass a baronet a minimax a sari a fall a ballot a knot a pot a rep a carrot a mart a part a tort a gut a poll a gateway a law a jay a sap a zag a fat a hall a gamut a dab a can a tabu a day a batt a waterfall a patina a nut a flow a lass a van a mow a nib a draw a regular a call a war a stay a gam a yap a cam a ray an ax a tag a wax a paw a cat a valley a drib a lion a saga a plat a catnip a pooh a rail a calamus a dairyman a bater a canal Panama

Example: Is a string a palindrome?

```
/** = "s is a palindrome" */
```

public static boolean isPal(String s) \{
if (s.length $($) $<=1$)
return true;

Substring from $\mathrm{s}[1]$ to $\mathrm{s}[\mathrm{n}-1]$
// \{ s has at least 2 chars \}
int $\mathrm{n}=\mathrm{s}$.length()-1;
return $\operatorname{s.charAt}(0)==$ s.charAt(n) \&\& isPal(s.substring(1,n));

The Fibonacci Function

Mathematical definition:

$$
\begin{aligned}
& \mathrm{fib}(0)=0 \\
& \mathrm{fib}(1)=1 \\
& \mathrm{fib}(\mathrm{n})=\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2) \mathrm{n} \geq 2
\end{aligned}
$$

Fibonacci sequence: $011235813 \ldots$

```
\(/ * *=\) fibonacci(n). Pre: \(\mathrm{n}>=0 * /\)
static int fib(int n\()\) \{
    if \((\mathrm{n}<=1)\) return n ;
    \(/ /\{1<n\}\)
    return fib(n-1) + fib(n-2);
\}
```


Fibonacci (Leonardo Pisano) 1170-1240?

Statue in Pisa Italy
Giovanni Paganucci
1863

Example: Count the e's in a string

/** = number of times coccurs in s */
public static int countEm(char c , String s) \{
if $($ s.length ()$=0)$ return 0 ;
// \{ s has at least 1 character \}
if $(\mathrm{s} . \operatorname{charAt}(0)!=\mathrm{c})$
substring s[1..] i.e. $s[1]$
s(s.length ()-1)
return countEm(c, s.substring(1));
// \{ first character of s is c \}
return $1+$ countEm (c, s.substring(1));
\}
\square countEm('e', "it is easy to see that this has many e's") $=4$
\square countEm('e', "Mississippi") $=0$

