
9/25/17

1

Review Session

CS2110 Prelim #1

Primitive types vs classes
●  Variable declarations:

o  int i = 5;
o  Animal a = new Animal(“Bob”);

●  How does “==” behave?

a

 i

Java Basics

Animal@0x36

5 name

Animal@0x36

“Bob”

Default values

●  What value does a field contain when it is declared but not
instantiated?
o  Animal a;
o  Object ob;
o  int i;
o  boolean b;
o  char c;
o  double d;

Java Basics

//null
//null
//0

//0.0

//false
//’\0’ (null byte)

Wrapper Classes (Boxing)
class Character contains useful methods
●  Examples of useful static Character methods:

o  Character.isDigit(c)
o  IntCharacter.isLetter(c)

●  Autoboxing –should be called autowrapping!
o  Integer x = 100;
o  int y = x;

Java Basics

String literals
String instantiation:
●  Constructor: String s = new String(“dog”);
●  Literal: String s2 = “dog”;
●  Roughly equivalent, but literal is preferred

s

Java Basics

String@0x62

String@0x28 s2

“dog”

String@0x28
“dog”

String@0x62

Strings are immutable
Once a String is created, it cannot be changed
●  Methods such as toLowerCase and substring return new

Strings, leaving the original one untouched
●  In order to “modify” Strings, you instead construct a new String

and then reassign it to the original variable:
o  String name = “Gries”;
o  name = name + “, “;
o  name = name + “David”;

Java Basics

9/25/17

2

String catenation
Operator + operator is called catenation, or concatenation
●  If one operand is a String and the other isn’t, the other is

converted to a String
●  Important case: Use “” + exp to convert exp to a String.
●  Evaluates left to right. Common mistake:

o  System.out.println(“sum: “ + 5 + 6);
§  Prints “sum: 56”

o  System.out.println(“sum: “ + (5 + 6));
§  Prints “sum: 11”

Java Basics

Other String info
●  Always use equals to compare Strings:

o  str1.equals(str2)

●  Very useful methods:
o  length, substring (overloaded), indexOf, charAt

●  Useful methods:
o  lastIndexOf, contains, compareTo

Java Basics

1D Array Review
Animal[] pets = new Animal[3];

2D Arrays

Array@0x10

null

null

null

0

1

2

null pets Array@0x10 pets.length is 3
pets[0] = new Animal();
pets[0].walk();

Why is the following illegal?
pets[1] = new Object();

Java arrays
2D Arrays

Java arrays do not change size!

A@0xab

0
1

A@0x12

0
1
2
3

A@0xab b

“Cornell”
“Ithaca”

“Cornell”
“Ithaca”

String[] b = {“Cornell”, “Ithaca”};
String[] bBig = Arrays.copyOf(b, 4);
b = bBig;

A@0x12

A@0x12 bBig

2D arrays: An array of 1D arrays.
2D Arrays

Java only has 1D arrays, whose elements can also be arrays.
int[][] b = new int[2][3];

This array has 2 int[] arrays of length 3 each.

0
1

b

0
1

0
0
0 2

0
1

0
0
0 2

2D arrays: An array of 1D arrays.
2D Arrays

How many rows in b? b.length
How many columns in row 0? b[0].length
How many columns in row 1? b[1].length

0
1

b

0
1

0
0
0 2

0
1

0
0
0 2

9/25/17

3

2D arrays: An array of 1D arrays.
2D Arrays

int[][] b = new int[2][];

The elements of b are of type int[].

null
null

0
1

b

2D arrays: An array of 1D arrays.
2D Arrays

0
1

b

0
1

0
4
1 2

0
1

1110
2110
3110 2

int[][] b = new int[2][];
b[0] = new int[] {0,4,1,3,9,3};
b[1] = new int[] {1110,2110,3110};

b is called a ragged array

9
3

3 3

5
4

The superclass of exceptions: Throwable
Exceptions

class Throwable:
●  Superclass of Error and

Exception
●  Does the “crashing”
●  Contains the constructors

and methods
●  Throwable()
●  Throwable(String)

class Error:
●  A very serious problem and

should not be handled
Example: StackOverflowError

class Exception:
●  Reasonable application might

want to crash or handle the
Exception in some way

A Throwable instance: ArithmeticException
Exceptions

ArithmeticException@x2

Throwable

Exception

RuntimeException

ArithmeticException

“/ by zero” detailMessage

There are so many exceptions
we need to organize them.

Throwable

Exception Error

RuntimeException

ArithmeticException

Bubbling up exceptions
Exceptions

class Ex {
 void first() {

 second();
 }

 void second() {
 third();

}

void third() {

 int c = 5/0;
 }
}

AE

AE

Exceptions will bubble up the call
stack and crash the methods that
called it.

Console:
Exception in thread “main”
 java.lang.ArithmeticException:

 at Ex.third(Ex.java:11)
 at Ex.second(Ex.java:7)
 at Ex.first(Ex.java:3)

AE

AE = ArithmeticException

1
2
3
4
5
6
7
8
9
10
11
12
13

Method call: first();

Try-catch blocks
Exceptions

class Ex {
 void first() {

 second();
 }
 void second() {
 try {

 System.out.println(“in”);
 third();

 System.out.println(“out”);
 } catch (Exception e){

 System.out.print(“error”);
 }

}

void third() {

 int c = 5/0;
 }
}

An exception will bubble up the call
stack and crash the methods that
called it
… unless it is caught.

catch will handle any exceptions
of type Exception (and its
subclasses) that happened in the
try block

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Console:

Exception Type

ArithmeticException!
error

in

9/25/17

4

How to write an exception class
/** An instance is an exception */
public class OurException extends Exception {

 /** Constructor: an instance with message m*/
 public OurException(String m) {

 super(m);
 }

 /** Constructor: an instance with default message */
 public OurException() {

 this(“Default message!”);
 }

}

Exceptions

A Little More Geometry!
Abstract Classes

Shape
 x ____
 y ____

Triangle
 area()
 base____
 height ____

Circle
 area()
 radius ____

Square
 area()
 size ____

A Partial Solution:
Add method area to class Shape:

Abstract Classes

public double area() {
 return 0;

}

public double area() {
 throw new RuntimeException(“area not

overridden”);
}

Problems not solved

1.  What is a Shape that isn’t a Circle, Square, Triangle,
etc? What is only a shape, nothing more specific?
a. Shape s = new Shape(...); Should be

disallowed

Abstract Classes

2. What if a subclass doesn’t override area()?
a.  Can’t force the subclass to override it!
b.  Incorrect value returned or exception thrown.

Solution: Abstract classes

public abstract class Shape {

 public double area() {
return 0;

}
}

Abstract Classes

Abstract class
Can’t be instantiated.
(new Shape() illegal)

Solution: Abstract methods

public abstract class Shape {

 public abstract double area();

}

Abstract Classes

Abstract method
Subclass must
override.

●  Can have
implemented
methods, too

●  Place abstract

method only in
abstract class.

●  Semicolon

instead of body.

9/25/17

5

Abstract Classes, Abstract Methods

1.  Cannot instantiate an object of an abstract class.
 (Cannot use new-expression)

1.  A subclass must override abstract methods.

(but no multiple inheritance in Java, so…)

Abstract Classes

Interfaces
public interface Whistler {

 void whistle();
 int MEANING_OF_LIFE= 42;

}

class Human extends Mammal implements Whistler {
}

Interfaces

Must implement all methods in the
implemented interfaces

●  methods are automatically
public and abstract

●  fields are automatically

public, static, and
final (i.e. constants)

Multiple interfaces
public interface Singer {

 void singTo(Human h);
}

class Human extends Mammal implements Whistler, Singer {
}

Interfaces

Classes can implement several
interfaces! They must implement
all the methods in those interfaces
they implement.

Must implement singTo(Human h)
and whistle()

Solution: Interfaces

Mammal

Human Parrot Dog

Whistler

Interfaces

Bird

Animal
Interface Whistler offers
promised functionality to
classes Human and Parrot!

Casting
Human h = new Human();
Object o = (Object) h;
Animal a = (Animal) h;
Mammal m = (Mammal) h;

Singer s = (Singer) h;
Whistler w = (Whistler) h;

All point to the same memory address!

Interfaces

Singer

Human

Mammal

Animal

Object

Whistler

Casting
Human h = new Human();
Object o = h;
Animal a = h;
Mammal m = h;
Singer s = h;
Whistler w = h;

Interfaces

Singer

Human

Mammal

Animal

Object

Whistler

Automatic
up-cast

Forced
down-cast

9/25/17

6

Casting up to an interface automatically
class Human … implements Whistler {

void listenTo(Whistler w) {...}
}
Human h = new Human(...);
Human h1 = new Human(...);
h.listenTo(h1);
Parrot p = new Parrot(...);
h.listenTo(p);

Interfaces

Human

Mammal

Animal

Object

Whistler

Arg h1 of the call has type Human. Its value is being stored
in w, which is of type Whistler. Java does an upward cast
automatically. Same thing for p of type Parrot.

Shape implements Comparable<T>

public class Shape implements Comparable<Shape> {
 ...
 /** … */
 public int compareTo(Shape s) {
 double diff= area() - s.area();
 return (diff == 0 ? 0 : (diff < 0 ? -1 : +1));
 }
}

Interfaces

Beauty of interfaces

Arrays.sort sorts an array of any class C, as long as C implements
interface Comparable<T> without needing to know any
implementation details of the class.

Classes that implement Comparable:
Boolean Byte Double Integer
String BigDecimal BigInteger Calendar
Time Timestamp and 100 others

Interfaces

String sorting
Arrays.sort(Object[] b) sorts an array of any class C, as long
as C implements interface Comparable<T>.

String implements Comparable, so you can write
 String[] strings= ...; ...
 Arrays.sort(strings);

During the sorting, when comparing
elements, a String’s compareTo
function is used

Interfaces

Abstract Classes vs. Interfaces
●  Abstract class represents

something
●  Sharing common code

between subclasses

●  Interface is what something
can do

●  A contract to fulfill
●  Software Engineering

purpose

Similarities:
●  Can’t instantiate
●  Must implement abstract methods

Four loopy questions
Loop Invariants

 //Precondition

Initialization;
 // invariant: P
 while (B) { S }

1. Does it start right?
Does initialization make
invariant P true?

2. Does it stop right?
Does P and !B imply
the desired result?

3. Does repetend S make
progress toward
termination?

4. Does repetend S
keep invariant P true?

9/25/17

7

Add elements backwards
Loop Invariants

??? b

 ??? b s = sum

h

 b s = sum

h

Precondition

Invariant

Postcondition

Add elements backwards
Loop Invariants

 ??? INV: b s = sum

h

int s = 0;
int h = b.length-1;
while (h >= 0) {

 s = s + b[h];
 h--;

}

0

1.  Does it start right?
2.  Does it stop right?
3.  Does it keep the invariant true?
4.  Does it make progress toward

termination?

What method calls are legal
Animal an; … an.m(args);

legal ONLY if Java can guarantee that
method m exists. How to guarantee?

Prelim Review

m must be declared in Animal or inherited.

Java Summary
●  On the “Resources” tab of the course website

●  We have selected some useful snippets

●  We recommend going over all the slides

41 41

Casting among types
(int) 3.2 casts double value 3.2 to an int

any number
type

any number
expression

byte short int long float double
narrow wider

must be explicit cast, may truncate

may be automatic cast

Page A-9, inside back cover

char is a number type: (int) 'V' (char) 86

Unicode representation: 86 'V'
public: Code everywhere can refer to Circle.
Called access modifier

Declaration of class Circle

42

/** An instance (object) represents a circle */
public class Circle {

}

Multi-line comment starts with /* ends with */

Precede every class
with a comment

Put declarations of
fields, methods in class
body: { … }

Put class
declaration in
file Circle.java

Page B-5

9/25/17

8

Overloading

43

Possible to have two or more methods with same name
/** instance represents a rectangle */
public class Rectangle {
 private double sideH, sideV; // Horiz, vert side lengths

 /** Constr: instance with horiz, vert side lengths sh, sv */
 public Rectangle(double sh, double sv) {
 sideH= sh; sideV= sv;
 }

 /** Constructor: square with side length s */
 public Rectangle(double s) {
 sideH= s; sideV= s;
 }
 …
}

Lists of parameter types
must differ in some way

Use of this

44

Page B-28

/** Constr: instance with radius radius*/
public Circle(double radius) {
 this.radius= radius;
}

this evaluates to the name
of the object in which is appears

Memorize this!

/** An instance represents a shape at a point in the plane */
public class Shape {
 private double x, y; // top-left point of bounding box
 /** Constructor: a Shape at point (x1, y1) */
 public Shape (double x1, double y1) {
 x= x1; y= y1;
 }
 /** return x-coordinate of bounding box*/
 public double getX() {
 return x;
 }
 /** return y-coordinate of bounding box*/
 public double getY() {
 return y;
 }
}

Class Shape

45

Object: superest class of them all

Constructor: public Object() {}

Page C-18 46

Class doesn’t explicitly extend another one? It automatically
extends class Object. Among other
components, Object contains:

/** return name of object */
public String toString()

c.toString() is “Circle@x1”

/** return value of “this object and ob
 are same”, i.e. of this == ob */
public boolean equals(Object ob)

Java has 4 kinds of variable

47

public class Circle {
 private double radius;

 private static int t;

 public Circle(double r) {
 double r1= r;
 radius= r1;
}

Field: declared non-static. Is in every object of
class. Default initial val depends on type, e.g. 0
for int

Class (static) var: declared static. Only one
copy of it. Default initial val depends on type,
e.g. 0 for int

Parameter: declared in () of method header. Created during call
before exec. of method body, discarded when call completed.
Initial value is value of corresp. arg of call. Scope: body.

Local variable: declared in method body. Created during call before exec. of body,
discarded when call completed. No initial value. Scope: from declaration to end of
block.

Basic class Box

48

parameter T (you choose name)

public class Box {
 private Object object;

 public void set(Object ob) {
 object = ob;
 }
 public Object get() {
 return object;
 } … New code

Box<Integer> b= new Box<Integer>();
b.set(new Integer(35));
Integer x= b.get();

public class Box<T> {
 private T object;

 public void set(T ob) {
 object = ob;
 }
 public T get() {
 return object;
 } …

Written using generic type

Replace type Object
everywhere by T

9/25/17

9

Linked Lists
(These slides are from the class lectures and

available on the website as well)

50

Idea: maintain a list (2, 5, 7) like this:

50

h a1 2
a1

a6
v

next
5

a6

a8
v

next
7

a8

null
v

next

This is a singly linked list

To save space we write names like a6 instead of N@35abcd00

Linked Lists

51

51

h a1 2
a1

a6
v

next
5

a6

a8
v

next
7

a8

null
v

next

Easy to insert a node in the beginning!

(2, 5, 7)

h a3 2
a1

a6
v

next
5

a6

a8
v

next
7

a8

null
v

next
8

a3

a1
v

next (8, 2, 5, 7)

52

52

h a1 2
a1

a6
v

next
5

a6

a2
v

next
7

a8

null
v

next

Easy to remove a node if you have its predecessor!

(2, 5, 8, 7)

8
a2

a8
v

next

k a6

h a1 2
a1

a6
v

next
5

a6

a8
v

next
7

a8

null
v

next
8

a2

a8
v

next

k a6 (2, 5, 7)

Recursion

Sum the digits in a non-negative integer
54

E.g. sum(7) = 7

 /** return sum of digits in n.
 * Precondition: n >= 0 */
 public static int sum(int n) {
 if (n < 10) return n;

 // { n has at least two digits }
 // return first digit + sum of rest
 return sum(n/10) + n%10 ;
 }

sum calls itself!

E.g. sum(8703) = sum(870) + 3;

9/25/17

10

local variables

 parameters

 return info

Stack Frame
55

A “frame” contains information about a
method call:
At runtime, Java maintains a stack that
contains frames for all method calls that are
being executed but have not completed.
Method call: push a frame for call on stack, assign argument
values to parameters, execute method body. Use the frame for
the call to reference local variables, parameters.
End of method call: pop its frame from the stack; if it is a
function, leave the return value on top of stack.

(some) things to know for the prelim
•  Can you list the steps in evaluating a new-expression? Can you do

them yourself on a piece of paper?
•  Can you list the steps in executing a method call? Can you do them

yourself on a piece of paper?
•  Do you understand exception handling? E.g. What happens after a

catch block has been executed?
•  Can you write a recursive method or understand a given one?
•  Abstract class and interfaces
•  ArrayList, interface Comparable
•  Loops invariants
 56

