

Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \cdots$
Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \cdots$

Find the golden ratio when we divide a line into two parts such that
whole length / long part == long part / short part
Call long part a and short part b

$(\mathrm{a}+\mathrm{b}) / \mathrm{a}=\mathrm{a} / \mathrm{b} \quad$ Solution is called Φ

See webpage:
http://www.mathsisfun.com/numbers/golden-ratio.html

Prelim tonight

You know already whether you are taking it at 5:30 or 7:30.
5:30 Exam:

$$
\begin{array}{ll}
\text { A thru Te… } & \text { Take in Uris Hall G01 } \\
\text { Th... thru Z. } & \text { Take it in Ives } 305
\end{array}
$$

7:30 Exam:
A... thru De... Take it in Ives 305

Dh... Thru Z. Take it in Uris Hall G01

Fibonacci function (year 1202)

```
fib(0)=0
fib(1)=1
fib}(\textrm{n})=\textrm{fib}(\textrm{n}-1)+\textrm{fib}(\textrm{n}-2)\mathrm{ for n}\geq
/** Return fib(n). Precondition: n\geq0.*/
public static int f(int n) {
    if (n<=1) return n;
    return f(n-1)+f(n-2);
}
0,1,1,2,3,5,8,13,21,34,55
We'll see that this is a
    lousy way to compute
    f(n)
```

We'll see that this is a way to compute f(n)

Golden raí $\quad(1+\sqrt{5}) / 2=1.61803398$.
Find the golden ratio when we divide a line into two parts a and b such that

$$
(a+b) / a=a / b \quad=\Phi
$$

Golden rectangle

See webpage:
http://www.mathsisfun.com/numbers/golden-ratio.html

Golden ratio $\Phi=(1+\sqrt{ } 5) / 2=1.61803398 \cdots$

Find the golden ratio when we divide a line into two parts a and b such that

$$
(a+b) / a=a / b
$$

$$
=\varnothing
$$

a/b
Golden
$8 / 5=1.6$ rectangle

$13 / 8=1.625 \cdots$
$21 / 13=1.615 \cdots$
$34 / 21=1.619 \cdots$
$55 / 34=1.617 \cdots$
For successive Fibonacci numbers a, b,a/b is close to Φ but not quite it $\Phi .0,1,1,2,3,5,8,13,21,34,55, \ldots$

Find $\mathrm{fib}(\mathrm{n})$ from $\mathrm{fib}(\mathrm{n}-1)$
$0,1,1,2,3,5,8,13,21,34,55$

Since fib(n) / fib(n-1) is close to the golden ratio,
You can see that (golden ratio) * fib(n-1) is close to fib(n)
We can actually use this formula to calculate fib(n) From fib(n-1)

Golden ratio and Fibonacci numbers: inextricably linked

The Parthenon

Suppose you are a plant

You want to grow your leaves so that they all get a good amount of sunlight. You decide to grow them at successive angles of 180 degrees

Pretty stupid plant!
The two bottom leaves get VERY little sunlight!

The artichoke sprouts its leafs at a constant amount of rotation: 222.5 degrees (in other words the distance between one leaf and the next is 222.5 degrees).
topones.weebly.com/1/post/2012/10/the-artichoke-and-fibonacci.html

Uses of Fibonacci sequence in CS

Fibonacci search
Fibonacci heap data strcture
Fibonacci cubes: graphs used for interconnecting parallel and distributed systems

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

$T(0)$	$=a$	$T(n)$: Time to calculate $f(n)$
$T(1)$	$=a$	Just a recursive function
$T(n)$	$=a+T(n-1)+T(n-2)$	"recurrence relation"

We can prove that $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$
It's a "proof by induction".
Proof by induction is not covered in this course.
But we can give you an idea about why $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}\left(2^{\mathrm{n}}\right)$

$$
\mathrm{T}(\mathrm{n})<=\mathrm{c}^{*} 2^{\mathrm{n}} \text { for } \mathrm{n}>=\mathrm{N}
$$

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

$\mathrm{T}(0)=\mathrm{a}$	$\mathrm{T}(\mathrm{n})<=\mathrm{c} * 2^{\mathrm{n}}$ for $\mathrm{n}>=\mathrm{N}$
$T(1)=a$	T(4)
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)$	$=\quad<$ Definition $>$
$\mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0}$	$a+T(3)+T(2)$
$\mathrm{T}(1)=\mathrm{a} \leq \mathrm{a} * 2^{1}$	$a+a * 2^{3}+a * 2^{2}$
$\mathrm{T}(2) \leq \mathrm{a} * 2^{2}$	$\begin{gathered} =\quad<\text { arithmetic> } \\ a^{*}(13) \end{gathered}$
$\mathrm{T}(3) \leq \mathrm{a} * 2^{3}$	$\begin{gathered} \leq \quad<\text { arithmetic }> \\ \mathrm{a} * 2^{4} \end{gathered}$

Recursion for fib: $\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+\mathrm{f}(\mathrm{n}-2)$

$\mathrm{T}(0)=\mathrm{a}$	$\mathrm{T}(\mathrm{n})<=\mathrm{c} * 2^{\mathrm{n}}$ for $\mathrm{n}>=\mathrm{N}$
$T(1)=a$	T(5)
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2)$	$=\quad<$ Definition $>$
$\mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0}$	$\mathrm{a}+\mathrm{T}(4)+\mathrm{T}(3)$
$\mathrm{T}(1)=\mathrm{a} \leq \mathrm{a} * 2^{1}$	$\leq \quad<$ look to the left>
$\mathrm{T}(2) \leq \mathrm{a} * 2^{2}$	$a+a * 2^{4}+a * 2^{3}$ $=\quad<\text { arithmetic }>$
$\mathrm{T}(3) \leq \mathrm{a} * 2^{3}$	a * (25)
$\mathrm{T}(4) \leq \mathrm{a} * 2^{4}$	$\begin{gathered} \leq \quad<\text { arithmetic }> \\ \mathrm{a} * 2^{5} \end{gathered}$

WE CAN GO ON FOREVER LIKE THIS

Recursion for fib: $f(n)=f(n-1)+f(n-2)$

$$
\begin{aligned}
& \mathrm{T}(0)=\mathrm{a} \\
& \mathrm{~T}(1)=\mathrm{a} \\
& \mathrm{~T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n}-2) \\
& \mathrm{T}(0)=\mathrm{a} \leq \mathrm{a} * 2^{0} \\
& \mathrm{~T}(1)=\mathrm{a} \leq \mathrm{a} * 2^{1} \\
& \mathrm{~T}(2) \leq \mathrm{a} * 2^{2} \\
& \mathrm{~T}(3) \leq \mathrm{a} * 2^{3} \\
& \mathrm{~T}(4) \leq \mathrm{a} * 2^{4}
\end{aligned}
$$

Caching

As values of $\mathrm{f}(\mathrm{n})$ are calculated, save them in an ArrayList. Call it a cache.

When asked to calculate $f(n)$ see if it is in the cache.
If yes, just return the cached value.
If no, calculate $f(n)$, add it to the cache, and return it.

Must be done in such a way that if $\mathrm{f}(\mathrm{n})$ is about to be cached, $\mathrm{f}(0), \mathrm{f}(1), \cdots \mathrm{f}(\mathrm{n}-1)$ are already cached.

The golden ratio

$a>0$ and $b>a>0$ are in the golden ratio if
$(a+b) / b=b / a \quad$ call that value φ
$\varphi^{2}=\varphi+1 \quad$ so $\varphi=(1+\operatorname{sqrt}(5)) / 2=1.618 \ldots$

ratio of sum of sides to longer side
ratio of longer side to shorter side
/** Return fib(n), for $\mathrm{n}>=0$. */
public static int $f($ int $n)\{$
if ($\mathrm{n}<=1$) return 1 ;
int $p=0$; int $c=1 ;$ int $i=2$;
$/ /$ invariant: $p=\mathrm{fib}(\mathrm{i}-2)$ and $\mathrm{c}=\mathrm{fib}(\mathrm{i}-1)$
while $(i<n)\{$

$\mathrm{i}=\mathrm{i}+1$;
\}
return $+{ }^{+}$;
\}

Logarithmic algorithm!

$$
\begin{aligned}
& \mathrm{f}_{0}=0 \\
& f_{1}=1 \\
& f_{n+2}=f_{n+1}+f_{n} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\binom{f_{n}}{f_{n+1}}=\binom{f_{n+1}}{f_{n+2}} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
f_{n} \\
f_{n+1}
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{f_{n+1}}{f_{n+2}}=\binom{f_{n+2}}{f_{n+3}} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{k}\binom{f_{n}}{f_{n+1}}=\binom{f_{n+k}}{f_{n+k+1}}
\end{aligned}
$$

Another log algorithm!
Define $\phi=(1+\sqrt{ } 5) / 2 \quad \phi^{\prime}=(1-\sqrt{ } 5) / 2$
The golden ratio again.
Prove by induction on n that
$f n=\left(\phi^{n}-\phi^{, n}\right) / \sqrt{5}$

