SHORTEST PATH ALGORITHM

CHAPTER 28

A7. Implement shortest-path algorithm

One semester: Average time was 3.3 hours.
We give you complete set of test cases and a GUI to play with.
Efficiency and simplicity of code will be graded.
Read pinned A7 FAQs note carefully:
2. Important! Grading guidelines.

We demo it.

Dijkstra's shortest-path algorithm

Edsger Dijkstra, in an interview in 2010 (CACM):
... the algorithm for the shortest path, which I designed in about 20 minutes. One morning I was shopping in Amsterdam with my young fiance, and tired, we sat down on the cafe terrace to drink a cup of coffee, and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a 20-minute invention. [Took place in 1956]

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische Mathematik 1, 269-271 (1959).
Visit http://www.dijkstrascry.com for all sorts of information on Dijkstra and his contributions. As a historical record, this is a gold mine.

Dijkstra's shortest-path algorithm

Dijsktra describes the algorithm in English:
\square When he designed it in 1956 (he was 26 years old), most people were programming in assembly language.
\square Only one high-level language: Fortran, developed by John Backus at IBM and not quite finished.
No theory of order-of-execution time -topic yet to be developed. In paper, Dijkstra says, "my solution is preferred to another one ... "the amount of work to be done seems considerably less."

Dijkstra, E.W. A note on two problems in Connexion with graphs. Numerische Mathematik 1, 269-271 (1959).

1968 NATO Conference on Software Engineering

- In Garmisch, Germany
- Academicians and industry people attended
- For first time, people admitted they did not know what they were doing when developing/testing software. Concepts, methodologies, tools were inadequate, missing
- The term software engineering was born at this conference.
- The NATO Software Engineering Conferences:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

Get a good sense of the times by reading these reports!

1968 NATO Conference on

Software Engineering, Garmisch, Germany

Term "software engineering" coined for this conference

1968 NATO Conference on

Software Engineering, Garmisch, Germany

1968/69 NATO Conferences on Software Engineering

Beards
The reason why some people grow aggressive tufts of facial hair Is that they do not like to show the chin that isn't there.
a grook by Piet Hein
Editors of the proceedings

Edsger Dijkstra Niklaus Wirth Tony Hoare

David Gries

Dijkstra's shortest path algorithm

The $\mathrm{n}(>0)$ nodes of a graph numbered $0 . . \mathrm{n}-1$.
Each edge has a positive weight.
wgt($\mathrm{v} 1, \mathrm{v} 2$) is the weight of the edge from node v 1 to v 2 .
Some node v be selected as the start node.
Calculate length of shortest path from v to each node.
Use an array d[0..n-1]: for each node w , store in $\mathrm{d}[\mathrm{w}]$ the length of the shortest path from v to w .

$$
\begin{aligned}
& \mathrm{d}[0]=2 \\
& \mathrm{~d}[1]=5 \\
& \mathrm{~d}[2]=6 \\
& \mathrm{~d}[3]=7 \\
& \mathrm{~d}[4]=0
\end{aligned}
$$

The loop invariant

 (edges leaving the Far off set and edges from the Frontier to the Settled set are not shown)1. For a Settled node s, a shortest path from v to s contains only settled nodes and $\mathrm{d}[\mathrm{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For a Frontier node f, at least one $v \rightarrow f$ path contains only settled nodes (except perhaps for f) and $\mathrm{d}[\mathrm{f}]$ is the length of the shortest such path

3. All edges leaving S go to F.

This edge does not leave S!

Another way of saying 3: There are no edges from S to the far-off set.

The loop invariant

 (edges leaving the Far off set and edges from the Frontier to the Settled set are not shown)1. For a Settled node s, a shortest path from v to s contains only settled nodes and $\mathrm{d}[\mathrm{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For a Frontier node f, at least one $v \rightarrow f$ path contains only settled nodes (except perhaps for f) and $\mathrm{d}[\mathrm{f}]$ is the length of the shortest such path

3. All edges leaving S go to F.

4. For a Settled node $s, d[s]$ is length of shortest $v \rightarrow s$ path.
5. For a Frontier node $f, d[f]$ is length of shortest $v \rightarrow f$ path using only Settled nodes (except for f).
6. All edges leaving S go to F.

Theorem. For a node f in F with minimum d value (over nodes in $\mathrm{F}), \mathrm{d}[\mathrm{f}]$ is the length of a shortest path from v to f .

Proof. Show that any other $v \rightarrow>\mathrm{f}$ path has a length $>=\mathrm{d}[\mathrm{f}]$. Look only at case that v is in S.

1. For a Settled node $s, d[s]$ is length of shortest $v \rightarrow s$ path.
2. For a Frontier node $f, d[f]$ is length of shortest $v \rightarrow f$ path using only Settled nodes (except for f).
3. All edges leaving S go to F.

Theorem. For a node f in F with minimum d value (over nodes in $F), d[f]$ is the length of a shortest path from v to f.

Case 1: v is in S.
Case 2: v is in F . Note that $\mathrm{d}[\mathrm{v}]$ is 0 ; it has minimum d value

The algorithm

1. For $\mathbf{s}, \mathbf{d}[\mathbf{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path using red nodes (except for f).
3. Edges leaving S go to \mathbf{F}.

Theorem: For a node \mathbf{f} in \mathbf{F} with min d value, $\mathrm{d}[\mathrm{f}]$ is shortest path length

$$
S=\{ \} ; F=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0 ;
$$

The algorithm

1. For $\mathbf{s}, \mathbf{d}[\mathbf{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path using red nodes (except for f).
3. Edges leaving S go to \mathbf{F}.

Theorem: For a node \mathbf{f} in \mathbf{F} with min d value, $\mathrm{d}[\mathrm{f}]$ is shortest path length
$\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0 ;$ while ($\mathrm{F} \neq\{ \}$) \{

When does loop stop? When is array d completely calculated?

The algorithm

$$
\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0 ;
$$

while ($\mathrm{F} \neq\{ \}$) \{
$\mathrm{f}=$ node in F with $\min \mathrm{d}$ value; Remove ffrom F, add it to S;

1. For $\mathbf{s}, \mathbf{d}[\mathrm{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $v \rightarrow$ f path using red nodes (except for f).
3. Edges leaving S go to \mathbf{F}.

Theorem: For a node \mathbf{f} in \mathbf{F}
with min d value, $\mathrm{d}[\mathrm{f}]$ is
shortest path length
Loopy question 3: Progress toward termination?

The algorithm

1. For $\mathbf{s}, \mathbf{d}[\mathbf{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path using red nodes (except for f).
3. Edges leaving S go to \mathbf{F}.

Theorem: For a node \mathbf{f} in \mathbf{F} with min d value, $\mathrm{d}[\mathrm{f}]$ is shortest path length

$$
\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0 ;
$$

while ($\mathrm{F} \neq\{ \}$) \{
$\mathrm{f}=$ node in F with min d value; Remove ffrom F, add it to S; for each neighbor w of f \{
if (w not in S or F) \{
\} else \{

Loopy question 4: Maintain invariant?

The algorithm

1. For $\mathbf{s}, \mathbf{d}[\mathbf{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $v \rightarrow$ f path using red nodes (except for f).
3. Edges leaving S go to \mathbf{F}.

Theorem: For a node \mathbf{f} in \mathbf{F} with min d value, $\mathrm{d}[\mathrm{f}]$ is shortest path length

$$
\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0 ;
$$

$$
\text { while }(\mathrm{F} \neq\{ \})\{
$$

$\mathrm{f}=$ node in F with min d value; Remove f from F, add it to S; for each neighbor w of f \{ if (w not in S or F) \{ $\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})$; add w to F; \} else \{

Loopy question 4: Maintain invariant?

The algorithm

1. For $\mathbf{s}, \mathbf{d}[\mathbf{s}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{s}$ path.
2. For $\mathbf{f}, \mathbf{d}[\mathbf{f}]$ is length of shortest $\mathrm{v} \rightarrow \mathrm{f}$ path of form

3. Edges leaving S go to F .

Theorem: For a node \mathbf{f} in \mathbf{F}
with min d value, $d[f]$ is its shortest path length

Algorithm is finished!

Extend algorithm to include the shortest path

Let's extend the algorithm to calculate not only the length of the shortest path but the path itself.

$$
\begin{aligned}
& \mathrm{d}[0]=2 \\
& \mathrm{~d}[1]=5 \\
& \mathrm{~d}[2]=6 \\
& \mathrm{~d}[3]=7 \\
& \mathrm{~d}[4]=0
\end{aligned}
$$

Extend algorithm to include the shortest path

Question: should we store in v itself the shortest path from v to every node? Or do we need another data structure to record these paths?

Not finished!
And how do
we maintain it?

$$
\begin{aligned}
& \mathrm{d}[0]=2 \\
& \mathrm{~d}[1]=5 \\
& \mathrm{~d}[2]=6 \\
& \mathrm{~d}[3]=7 \\
& \mathrm{~d}[4]=0
\end{aligned}
$$

Extend algorithm to include the shortest path

For each node, maintain the backpointer on the shortest path to that node.
Shortest path to 0 is $v->0$. Node 0 backpointer is 4 .
Shortest path to 1 is $v->0->1$. Node 1 backpointer is 0 .
Shortest path to 2 is $v->0->2$. Node 2 backpointer is 0 .
Shortest path to 3 is v-> 0 -> 2 -> 1 . Node 3 backpointer is 2 .

$$
\begin{array}{ll}
\mathrm{bk}[\mathrm{w}] \text { is w's backpointer } \\
\mathrm{d}[0]=2 & \text { bk[0] }=4 \\
\mathrm{~d}[1]=5 & \mathrm{bk}[1]=0 \\
\mathrm{~d}[2]=6 & \mathrm{bk}[2]=0 \\
\mathrm{~d}[3]=7 & \mathrm{bk}[3]=2 \\
\mathrm{~d}[4]=0 & \text { bk[4] (none) }
\end{array}
$$

$\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0$;
while ($\mathrm{F} \neq\{ \}$) \{
$\mathrm{f}=$ node in F with min d value;
Remove f from F, add it to \mathbf{S};
for each neighbor w of f \{
if (w not in S or F) \{
$d[w]=d[f]+\operatorname{wgt}(f, w) ;$ add w to F; bk[w]= f;
$\}$ else if $(\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])\{$

$$
\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w}) ;
$$

$$
\mathrm{bk}[\mathrm{w}]=\mathrm{f} \text {; }
$$

\}
\}\}


```
    S F Far off
S= {};F= {v}; d[v]= 0;
while (F\not= {}) {
    f= node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            d[w]= d[f] + wgt(f,w);
            add w to F; bk[w]= f;
            } else if (d[f]+wgt (f,w) < d[w]) {
            d[w]= d[f] + wgt(f,w);
            bk[w]= f;
    }
}}
```

```
S P
S= { }; F= {v}; d[v]= 0;
while (F\not= {}) {
    f= node in F with min d value;
    Remove f from F, add it to S;
    for each neighbor w of f {
        if (w not in S or F) {
            d[w]= d[f] + wgt(f,w);
        add w to F; bk[w]= f;
    } else if (d[f]+wgt (f,w) < d[w]) {
        d[w]= d[f] + wgt(f,w);
        bk[w]= f;
    }
}}
```

	For what nodes do we need a distance and a backpointer?
$S=\{ \} ; F=\{v\} ; d[v]=0 ;$$\text { while }(F \neq\{ \}) \text { \{ }$	
$\mathrm{f}=$ node in F with $\min \mathrm{d}$ value; Remove f from F, add it to S ; for each neighbor wof ff	For every node in S or F we need both its d-value and its backpointer (null for v)
for each neighbor w of f \{	
$\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w}) ;$ $\text { add w to } \mathrm{F} ; \mathrm{bk}[\mathrm{w}]=\mathrm{f} ;$	Don't want to use arrays d and bk! Instead, keep
$\begin{aligned} & \} \text { else if }(\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])\{ \\ & \mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w}) ; \end{aligned}$	information associated with a node. What data structure to use for the two values?
$\mathrm{bk}[\mathrm{w}]=\mathrm{f} ;$	
\}	
) $\}$	

 if (w not in S or F) \{
 \(d[w]=d[f]+w g t(f, w) ;\)
 add w to F; bk[w]= f;
 \} else if (\(\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])\) \{
 \(d[w]=d[f]+w g t(f, w) ;\)
 \(\mathrm{bk}[\mathrm{w}]=\mathrm{f}\);
 \}
 \}\}

For what nodes do we need a distance and a backpointer?

For every node in S or F we need both its d-value and its backpointer (null for v)
public class SFinfo $\{$
private node bckPntr;
private int distance;

Investigate execution time. Important: understand algorithm well enough to easily determine the total number of times each part is executed/evaluated

Assume:

n nodes reachable from v
e edges leaving those n nodes add w to F; bk[w]= f;
$\}$ else if (d[f]+wgt (f,w) < d[w]) \{
$d[w]=d[f]+w g t(f, w) ;$
bk[w]= f;
\}
\}\}
HashMap<Node, SFinfo> map

Directed graph
n nodes reachable from v
e edges leaving those n nodes
$F \neq\{ \}$ is true n times
Harder: In total, how many times does the loop
for each neighbor w of f
find a neighbor and execute repetend?
$\}$ else if $(\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])\{$

$$
\begin{aligned}
& \mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w}) ; \\
& \mathrm{bk}[\mathrm{w}]=\mathrm{f} ;
\end{aligned}
$$

\}
\}\}
HashMap<Node, SFinfo> map

public class SFinfo \{

 private node bckPntr; private int distance; ... \}

Directed graph
n nodes reachable from v
e edges leaving those n nodes
$\mathrm{F} \neq\{ \}$ is true n times
First if-statement: done e times
How many times does w not in S or F
evaluate to true?
public class SFinfo \{ private node bckPntr; private int distance; ... \}

Number of times (x) each part is executed/evaluated

$\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0$; while ($\mathrm{F} \neq\{ \}$) \{
$\mathrm{f}=$ node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f \{
if (w not in S or F) \{ $\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})$;
add w to F; bk[w]= f;
\} else if ($\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])$ \{
$\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})$;
bk[w]= f;

Assume: directed graph, using adjacency list
\}\} n nodes reachable from v e edges leaving those n nodes

Expected time

$\mathrm{S}=\{ \} ; \mathrm{F}=\{\mathrm{v}\} ; \mathrm{d}[\mathrm{v}]=0$; while ($\mathrm{F} \neq\{ \}$) \{
$\mathrm{f}=$ node in F with min d value;
Remove f from F, add it to S;
for each neighbor w of f \{
if (w not in S or F) \{ $\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})$; add w to F; bk[w]= f;

$1 * \mathrm{O}(1)$	1
$(\mathrm{n}+1) * \mathrm{O}(1)$	2

$\mathrm{n} * \mathrm{O}(1) \quad 3$
$\mathrm{n} *(\mathrm{O}(\log \mathrm{n})+\mathrm{O}(1)) \quad 4$
$(\mathrm{e}+\mathrm{n}) * \mathrm{O}(1) \quad 5$
e * $\mathrm{O}(1) \quad 6$
$(\mathrm{n}-1) * \mathrm{O}(1) \quad 7$
$(\mathrm{n}-1) * \mathrm{O}(\log \mathrm{n}) \quad 8$
$\}$ else if $(\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w})<\mathrm{d}[\mathrm{w}])\{(\mathrm{e}-(\mathrm{n}-1)) * \mathrm{O}(1) \quad 9$

$$
\mathrm{d}[\mathrm{w}]=\mathrm{d}[\mathrm{f}]+\mathrm{wgt}(\mathrm{f}, \mathrm{w}) ; \quad(\mathrm{e}-(\mathrm{n}-1)) * \mathrm{O}(\log \mathrm{n})
$$

$$
\mathrm{bk}[\mathrm{w}]=\mathrm{f} ;
$$

$(\mathrm{e}-(\mathrm{n}-1)) * \mathrm{O}(1) \quad 11$
\} Dense graph, so e close to $\mathrm{n}^{*} \mathrm{n}$: Line 10 gives $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$
Sparse graph, so e close to n : Line 4 gives $O(n \log n)$

