
Lecture 16
CS2110 Fall 2017GRAPHS

These aren't the graphs we're looking for

! A graph is a data
structure

! A graph has
! a set of vertices
! a set of edges

between vertices

! Graphs are a
generalization of trees

Graphs

This is a graph

Another transport graph

This is a graph

A Social Network Graph

Viewing'the'map'of'states'as'a'graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are
connected by an edge.

Do the same thing for a map of the world showing countries

A circuit graph (flip-flop)

A circuit graph (Intel 4004)

This is not a graph, this is a cat

V.J.$Wedeen$and$L.L.$Wald,$Martinos$CenterforBiomedical$Imaging$at$
MGH

This is a graph

This is a graph(ical model) that
has learned to recognize cats

Graphs

K5
K3,3

Undirect graphs

! A'undirected'graph is'a'pair'(V, E) where
! V is'a'(finite)'set
! E is'a'set'of'pairs'(u, v) where'u,v ! V

"Often'require'u ≠ v (i.e.'no'self;loops)

! Element'of'V is'called'a'vertex or'node
! Element'of'E is'called'an'edge or'arc

! |V| ='size'of'V,'often'denoted'by'n
! |E| ='size'of'E,'often'denoted'by'm

A

B C

DE

V = {A, B, C, D, E}
E = {(A, B), (A, C),

(B, C), (C, D)}

|V| = 5
|E| = 4

Directed graphs

! A'directed'graph (digraph)'is'a'lot'like'
an'undirected'graph'
! V is'a'(finite)'set

! E is'a'set'of'ordered pairs'(u, v) where'
u,v ! V

! Every'undirected'graph'can'be'easily'
converted'to'an'equivalent'directed'
graph'via'a'simple'transformation:
! Replace'every'undirected'edge'with'
two'directed'edges'in'opposite'
directions

! …'but'not'vice'versa

A

B C

DE

V = {A, B, C, D, E}
E = {(A, C), (B, A),

(B, C), (C, D),
(D, C)}

|V| = 5
|E| = 5

Graph terminology

! Vertices u and v are called
! the source and sink of the directed edge (u, v),

respectively
! the endpoints of (u, v) or'{u, v}

! Two vertices are adjacent if they are
connected by an edge

! The outdegree of a vertex u in a directed
graph is the number of edges for which u is the
source

! The indegree of a vertex v in a directed graph
is the number of edges for which v is the sink

! The degree of a vertex u in an undirected
graph is the number of edges of which u is an
endpoint

A

B C

DE

A

B C

DE

More graph terminology

! A'path is'a'sequence'v0,v1,v2,...,vp of'vertices'
such'that'for'0 ≤ i < p,
! (vi, vi+1)�E if the graph is directed

! {vi, vi+1}�E if the graph is undirected

! The'length'of'a'path is'its'number'of'edges'
! A'path'is'simple if'it'doesn’t'repeat'any'vertices
! A'cycle is'a'path'v0, v1, v2, ..., vp such'that'v0 = vp

! A'cycle'is'simple if'it'does'not'repeat'any'
vertices'except'the'first'and'last

! A'graph'is'acyclic if'it'has'no'cycles
! A'directed'acyclic'graph'is'called'a'DAG

A

B C

DE

A

B C

DE

DAG

NotaDAG

Path
A,C,D

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

A

B

C

D

E
F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

B

C

D

E
F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

C

D

E
F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

D

E
F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

E
F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

F

Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

YES!

Topological'sort

! We just computed a topological sort of the DAG
! This is a numbering of the vertices such that all edges go

from lower- to higher-numbered vertices
! Useful in job scheduling with precedence constraints

1

2

3

4

5
6

Topological'sort

k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}

1

2

3

4

5
6

1. Abstract algorithm
2. Don’t really want to change the

graph.
3. Will have to invent data structures

to make it efficient.

Graph'coloring

! A coloring of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

! How many colors are needed to color this graph?

A

B

C

D

E
F

Graph'coloring

! A coloring of an undirected graph is an assignment
of a color to each node such that no two adjacent
vertices get the same color

! How many colors are needed to color this graph?

A

B

C

D

E
F

An'application'of'coloring

! Vertices are'tasks
! Edge (u, v) is'present'if'tasks'u and'v each'require'access'to'

the'same'shared'resource,'and'thus'cannot'execute'
simultaneously

! Colors are'time'slots to'schedule'the'tasks
! Minimum'number'of'colors'needed'to'color'the'graph'='

minimum'number'of'time'slots'required

A

B

C

D

E
F

Planarity

! A graph is planar if it can be drawn in the plane without any
edges crossing

! Is this graph planar?

A

B

C

D

E
F

Planarity

! A graph is planar if it can be drawn in the plane
without any edges crossing

! Is this graph planar?
! Yes!

A

B

C

D

E
F

Planarity

! A graph is planar if it can be drawn in the plane
without any edges crossing

! Is this graph planar?
! Yes!

A

B

C

D

E
F

Detecting'Planarity

Kuratowski's Theorem:

! A graph is planar if and only if it does not contain a
copy of K5 or K3,3 (possibly with other nodes along
the edges shown)

K5 K3,3

Detecting'Planarity

In the early 1970’s, Cornell Prof John Hopcroft spent a sabbatical
at Stanford and worked with PhD student Bob Tarjan. They
developed the first linear-time algorithm for testing whether a
graph was planar. They later received the ACM Turing Award for
their work on algorithms.
Tarjan was hired at one point in the 1970’s into our department,
but the Ithaca weather was too depressing for him and he left for
Princeton.

Coloring'a'graph

! How many colors are
needed to color the
states so that no two
adjacent states have the
same color?

! Asked since 1852
! 1879: Kemp publishes a

proof that only 4 colors
are needed!

! 1880: Julius Peterson
finds a flaw in Kemp's
proof…

Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.

They used a computer to check that those 1, 936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot
of controversy.

Gries looked at their computer program, a recursive program written in the
assembly language of the IBM 7090 computer, and found an error, which was
safe (it said something didn’t have the property when it did) and could be fixed.
Others did the same.

Since then, there have been improvements. And a formal proof has even been
done in the Coq proof system

Four'Color'Theorem

Bipartite'graphs

! A'directed'or'undirected'graph'is'bipartite if'the'vertices'can'
be'partitioned'into'two'sets'such'that'no'edge'connects'two'
vertices'in'the'same'set

! The'following'are'equivalent
! G is'bipartite
! G is'2;colorable
! G has'no'cycles'of'odd'length

1

2

3

A

B

C

D

Traveling'salesperson

Find'a'path'of'minimum'distance'that'visits'every'city'

Amsterdam

Rome

Boston

Atlanta

London
Paris

Copenhagen

Munich

Ithaca

New$York

Washington

1202
1380

1214
1322

1356

1002

512
216

441

189
160

15561323

419

210

224 132

660 505

1078

Representations'of'graphs

2 3

2 4

3

1

2

3

4

Adjacency'List Adjacency'Matrix

1 2

34

1' 2'''3'''4
1
2
3
4

0$$$1$$$0$$$1
0$$$0$$$1$$$0
0$$$0$$$0$$$0
0$$$1$$$1$$$0

Adjacency'matrix'or'adjacency'List?

! n ='number'of'vertices
! m ='number'of'edges
! d(u) ='degree'of'u ='no.'of'edges'leaving'u

! Adjacency'Matrix
! Uses'space'O(n2)
! Enumerate'all'edges'in'time'O(n2)
! Answer'�Is'there'an'edge'from'u to'v?� in'O(1) time
! Better'for'dense'graphs'(lots'of'edges)

1' 2'''3'''4
1
2
3
4

0$$$1$$$0$$$1
0$$$0$$$1$$$0
0$$$0$$$0$$$0
0$$$1$$$1$$$0

! n ='number'of'vertices
! e ='number'of'edges
! d(u) ='degree'of'u ='no.'edges'leaving'u

! Adjacency'List
! Uses'space'O(e + n)
! Enumerate'all'edges'in'time'O(e + n)
! Answer'�Is'there'an'edge'from'u to'v?� in'O(d(u)) time
! Better'for'sparse'graphs'(fewer'edges)

2 3

2 4

3

1

2

3

4

Adjacency'matrix'or'adjacency'list?

Graph'algorithms

! Search
! Depth;first'search
! Breadth;first'search

! Shortest'paths
! Dijkstra's'algorithm

! Minimum'spanning'trees
! Jarnik/Prim/Dijkstra algorithm
! Kruskal's'algorithm

