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These aren't the graphs we're looking for



! A graph is a data 
structure

! A graph has
! a set of vertices
! a set of edges 

between vertices

! Graphs are a 
generalization of trees

Graphs



This is a graph



Another transport graph



This is a graph



A Social Network Graph



Viewing'the'map'of'states'as'a'graph

http://www.cs.cmu.edu/~bryant/boolean/maps.html

Each state is a point on the graph, and neighboring states are 
connected by an edge.

Do the same thing for a map of the world showing countries



A circuit graph (flip-flop)



A circuit graph (Intel 4004)



This is not a graph, this is a cat



V.J.$Wedeen$and$L.L.$Wald,$Martinos$Center$for$Biomedical$Imaging$at$
MGH

This is a graph



This is a graph(ical model) that 
has learned to recognize cats



Graphs

K5
K3,3



Undirect graphs

! A'undirected'graph is'a'pair'(V, E) where
! V is'a'(finite)'set
! E is'a'set'of'pairs'(u, v) where'u,v ! V

"Often'require'u ≠ v (i.e.'no'self;loops)

! Element'of'V is'called'a'vertex or'node
! Element'of'E is'called'an'edge or'arc

! |V| ='size'of'V,'often'denoted'by'n
! |E| ='size'of'E,'often'denoted'by'm
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V = {A, B, C, D, E}
E = {(A, B), (A, C), 

(B, C),  (C, D)}

|V| = 5
|E| = 4



Directed graphs

! A'directed'graph (digraph)'is'a'lot'like'
an'undirected'graph'
! V is'a'(finite)'set

! E is'a'set'of'ordered pairs'(u, v) where'
u,v ! V

! Every'undirected'graph'can'be'easily'
converted'to'an'equivalent'directed'
graph'via'a'simple'transformation:
! Replace'every'undirected'edge'with'
two'directed'edges'in'opposite'
directions

! …'but'not'vice'versa
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DE

V = {A, B, C, D, E}
E = {(A, C), (B, A), 

(B, C),  (C, D),
(D, C)}

|V| = 5
|E| = 5



Graph terminology

! Vertices u and v are called
! the source and sink of the directed edge (u, v), 

respectively
! the endpoints of (u, v) or'{u, v}

! Two vertices are adjacent if they are 
connected by an edge

! The outdegree of a vertex u in a directed 
graph is the number of edges for which u is the 
source

! The indegree of a vertex v in a directed graph 
is the number of edges for which v is the sink

! The degree of a vertex u in an undirected 
graph is the number of edges of which u is an 
endpoint
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More graph terminology

! A'path is'a'sequence'v0,v1,v2,...,vp of'vertices'
such'that'for'0 ≤ i < p,
! (vi, vi+1)�E if the graph is directed

! {vi, vi+1}�E if the graph is undirected

! The'length'of'a'path is'its'number'of'edges'
! A'path'is'simple if'it'doesn’t'repeat'any'vertices
! A'cycle is'a'path'v0, v1, v2, ..., vp such'that'v0 = vp

! A'cycle'is'simple if'it'does'not'repeat'any'
vertices'except'the'first'and'last

! A'graph'is'acyclic if'it'has'no'cycles
! A'directed'acyclic'graph'is'called'a'DAG
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DAG

Not$a$DAG

Path
A,C,D



Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears
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Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears
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Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears
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Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears
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Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

E
F



Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

F



Is'this'a'DAG?

! Intuition:'
! If'it’s'a'DAG,'there'must'be'a'vertex'with'indegree'zero

! This'idea'leads'to'an'algorithm
! A'digraph'is'a'DAG'if'and'only'if'we'can'iteratively'delete'
indegree;0'vertices'until'the'graph'disappears

YES!



Topological'sort

! We just computed a topological sort of the DAG
! This is a numbering of the vertices such that all edges go 

from lower- to higher-numbered vertices
! Useful in job scheduling with precedence constraints
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Topological'sort

k= 0;
// inv: k nodes have been given numbers in 1..k in such a way that

if n1 <= n2, there is no edge from n2 to n1.
while (there is a node of in-degree 0) {

Let n be a node of in-degree 0;
Give it number k;
Delete n and all edges leaving it from the graph.
k= k+1;

}
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1. Abstract algorithm
2. Don’t really want to change the 

graph.
3. Will have to invent data structures 

to make it efficient.



Graph'coloring

! A coloring of an undirected graph is an assignment of 
a color to each node such that no two adjacent 
vertices get the same color

! How many colors are needed to color this graph?
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Graph'coloring

! A coloring of an undirected graph is an assignment 
of a color to each node such that no two adjacent 
vertices get the same color

! How many colors are needed to color this graph?
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An'application'of'coloring

! Vertices are'tasks
! Edge (u, v) is'present'if'tasks'u and'v each'require'access'to'

the'same'shared'resource,'and'thus'cannot'execute'
simultaneously

! Colors are'time'slots to'schedule'the'tasks
! Minimum'number'of'colors'needed'to'color'the'graph'='

minimum'number'of'time'slots'required
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Planarity

! A graph is planar if it can be drawn in the plane without any 
edges crossing

! Is this graph planar?
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Planarity

! A graph is planar if it can be drawn in the plane 
without any edges crossing

! Is this graph planar?
! Yes!
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Planarity

! A graph is planar if it can be drawn in the plane 
without any edges crossing

! Is this graph planar?
! Yes!

A

B

C

D

E
F



Detecting'Planarity

Kuratowski's Theorem:

! A graph is planar if and only if it does not contain a 
copy of K5 or K3,3 (possibly with other nodes along 
the edges shown)

K5 K3,3



Detecting'Planarity

In the early 1970’s, Cornell Prof John Hopcroft spent a sabbatical 
at Stanford and worked with PhD student Bob Tarjan. They 
developed the first linear-time algorithm for testing whether a 
graph was planar. They later received the ACM Turing Award for 
their work on algorithms.
Tarjan was hired at one point in the 1970’s into our department, 
but the Ithaca weather was too depressing for him and he left for 
Princeton.



Coloring'a'graph

! How many colors are 
needed to color the 
states so that no two 
adjacent states have the 
same color?

! Asked since 1852
! 1879: Kemp publishes a 

proof that only 4 colors 
are needed!

! 1880: Julius Peterson 
finds a flaw in Kemp's 
proof…



Every planar graph is 4-colorable [Appel & Haken, 1976]

The proof rested on checking that 1,936 special graphs had a certain property.

They used a computer to check that those 1, 936 graphs had that property!

Basically the first time a computer was needed to check something. Caused a lot 
of controversy.

Gries looked at their computer program, a recursive program written in the 
assembly language of the IBM 7090 computer, and found an error, which was 
safe (it said something didn’t have the property when it did) and could be fixed. 
Others did the same.

Since then, there have been improvements. And a formal proof has even been 
done in the Coq proof system 

Four'Color'Theorem



Bipartite'graphs

! A'directed'or'undirected'graph'is'bipartite if'the'vertices'can'
be'partitioned'into'two'sets'such'that'no'edge'connects'two'
vertices'in'the'same'set

! The'following'are'equivalent
! G is'bipartite
! G is'2;colorable
! G has'no'cycles'of'odd'length
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Traveling'salesperson

Find'a'path'of'minimum'distance'that'visits'every'city'

Amsterdam

Rome

Boston

Atlanta

London
Paris

Copenhagen

Munich

Ithaca

New$York

Washington

1202
1380

1214
1322

1356

1002

512
216

441

189
160

15561323

419

210

224 132

660 505

1078



Representations'of'graphs

2 3

2 4

3
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Adjacency'List Adjacency'Matrix

1 2

34

1' 2'''3'''4
1
2
3
4

0$$$1$$$0$$$1
0$$$0$$$1$$$0
0$$$0$$$0$$$0
0$$$1$$$1$$$0



Adjacency'matrix'or'adjacency'List?

! n ='number'of'vertices
! m ='number'of'edges
! d(u) ='degree'of'u ='no.'of'edges'leaving'u

! Adjacency'Matrix
! Uses'space'O(n2)
! Enumerate'all'edges'in'time'O(n2)
! Answer'�Is'there'an'edge'from'u to'v?� in'O(1) time
! Better'for'dense'graphs'(lots'of'edges)

1' 2'''3'''4
1
2
3
4

0$$$1$$$0$$$1
0$$$0$$$1$$$0
0$$$0$$$0$$$0
0$$$1$$$1$$$0



! n ='number'of'vertices
! e ='number'of'edges
! d(u) ='degree'of'u ='no.'edges'leaving'u

! Adjacency'List
! Uses'space'O(e + n)
! Enumerate'all'edges'in'time'O(e + n)
! Answer'�Is'there'an'edge'from'u to'v?� in'O(d(u)) time
! Better'for'sparse'graphs'(fewer'edges)
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Adjacency'matrix'or'adjacency'list?



Graph'algorithms

! Search
! Depth;first'search
! Breadth;first'search

! Shortest'paths
! Dijkstra's'algorithm

! Minimum'spanning'trees
! Jarnik/Prim/Dijkstra algorithm
! Kruskal's'algorithm


