
10/2/17

1

ASTS, GRAMMARS, PARSING,
TREE TRAVERSALS

Lecture 13
CS2110 – Fall 2017

1

Expression Trees
2

From last time: we can draw a syntax tree for the
Java expression 2 * 1 – (1 + 0).

-
*

2 1
+

1 0

Pre-order, Post-order, and In-order
3

-
*

2 1
+

1 0

Pre-order traversal:
1. Visit the root
2. Visit the left subtree (in pre-order)
3. Visit the right subtree

- * 2 1 + 1 0

Pre-order, Post-order, and In-order
4

-
*

2 1
+

1 0

Post-order traversal
1. Visit the left subtree (in post-order)
2. Visit the right subtree
3. Visit the root

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + *

Pre-order, Post-order, and In-order
5

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + *

In-order traversal
1. Visit the left subtree (in-order)
2. Visit the root
3. Visit the right subtree

2 * 1 - 1 + 0

Pre-order, Post-order, and In-order
6

-
*

2 1
+

1 0

Post-order traversal

- * 2 1 + 1 0Pre-order traversal

2 1 * 1 0 + *

In-order traversal (2 * 1) - (1 + 0)

To avoid ambiguity, add parentheses around
subtrees that contain operators.

10/2/17

2

In Defense of Postfix Notation
7

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2 1 * 1 0 + *

In Defense of Postfix Notation
8

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 * 1 0 + *

2

In Defense of Postfix Notation
9

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

* 1 0 + *

2
1

In Defense of Postfix Notation
10

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

1 0 + *

2

In Defense of Postfix Notation
11

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

+ *

2
1
0

In Defense of Postfix Notation
12

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

*

2
1

10/2/17

3

In Defense of Postfix Notation
13

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2

In Defense of Postfix Notation
14

¨ Execute expressions in postfix notation by reading
from left to right.

¨ Numbers: push onto the stack.
¨ Operators: pop the operands off the stack, do the

operation, and push the result onto the stack.

2

In about 1974, Gries paid
$300 for an HP calculator,
which had some memory
and used postfix notation!
Still works. a.k.a. “reverse Polish notation”

In Defense of Prefix Notation
15

¨ Function calls in most programming languages use
prefix notation: like add(37, 5).

¨ Some languages (Lisp, Scheme, Racket) use prefix
notation for everything to make the syntax simpler.

(define (fib n)
(if (<= n 2)

1
(+ (fib (- n 1) (fib (- n 2)))))

Prefix and Postfix Notation16

(5 + 3) * 4

5 + (3 * 4)

1+2+3*4-7

Not as strange as it looks!
add(a, b) is prefix notation for the binary add operator!

(in some languages, this is simply written add a b)
n! is a postfix application of the factorial operator!

Infix Prefix Postfix

* + 5 3 4

+ 5 * 3 4

+ 1 + 2 - * 3 4 7

5 3 + 4 *

5 3 4 * +

1 2 + 3 4 * + 7 -

No parentheses needed!

Expression trees: in code
17

public class Int implements Expr {
private int v;
public int eval() { return v; }
public String infix() {

return " " + v + " ";
}

}

public class Sum implements Expr {
private Expr left, right;
public int eval() {
return left.eval() + right.eval();

}
public String infix() {
return "(" + left.infix() +

"+" + right.infix() + ")";
}

}

public interface Expr {
String infix(); // returns an infix representation
int eval(); // returns the value of the expression

}

Grammars
18

¨ Not all sequences of words are sentences:
The ate cat rat the

¨ How many legal sentences are there?
¨ How many legal Java programs are there?
¨ How can we check whether a string is a Java program?

The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the mat slowly.
The small cat that sat in the hat ate the big rat
on the mat slowly, then got sick.

10/2/17

4

Grammars
19

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Grammars
20

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Sentence

Grammars
21

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

Noun Verb Noun

Grammars
22

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies Verb Noun

Grammars
23

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like Noun

Grammars
24

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like astrophysics

10/2/17

5

A Grammar

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

25

Our sample grammar has these rules:
A Sentence can be a Noun followed by a Verb followed

by a Noun
A Noun can be goats or astrophysics or bunnies
A Verb can be like or see

There are exactly 18 valid
Sentences according to
this grammar.

Grammars
26

A grammar is a set of rules for generating
the valid strings of a language.

Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

bunnies like astrophysics
goats see bunnies
… (18 sentences total)

�The words goats, astrophysics, bunnies, like, see are called
tokens or terminals

�The words Sentence, Noun, Verb are called nonterminals

A recursive grammar
27

Sentence ® Sentence and Sentence
Sentence ® Sentence or Sentence
Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like

| see

bunnies like astrophysics
goats see bunnies
bunnies like goats and goats see bunnies
… (infinite possibilities!)

The recursive definition of Sentence makes this grammar infinite.

Aside
28

What if we want to add a period at the end of every sentence?
Sentence ® Sentence and Sentence .
Sentence ® Sentence or Sentence .
Sentence ® Noun Verb Noun .
Noun ® …
Does this work?
No! This produces sentences like:

goats like bunnies. and bunnies like astrophysics. .

Sentence Sentence

Sentence

Sentences with periods
29

PunctuatedSentence ® Sentence .
Sentence ®Sentence and Sentence
Sentence ®Sentence or Sentence
Sentence ® Noun Verb Noun
Noun ® goats
Noun ® astrophysics
Noun ® bunnies
Verb ® like
Verb ® see

� New rule adds a period only at
end of sentence.

� Tokens are the 7 words plus the
period (.)

� Grammar is ambiguous:
goats like bunnies
and bunnies like goats
or bunnies like astrophysics

Grammars for programming languages
30

A grammar describes every possible legal program.
You could use the grammar for Java to list every possible Java
program. (It would take forever.)

A grammar also describes how to “parse” legal programs.
The Java compiler uses a grammar to translate your text file
into a syntax tree—and to decide whether a program is legal.

docs.oracle.com/javase/specs/jls/se8/html/jls-2.html#jls-2.3

docs.oracle.com/javase/specs/jls/se8/html/jls-19.html

10/2/17

6

Grammar for simple expressions (not the best)
31

E ® integer
E ® (E + E)
Simple expressions:
¨ An E can be an integer.
¨ An E can be ‘(’ followed by an E

followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by this
grammar is a recursively-defined set

¨ Is language finite or infinite?
¨ Do recursive grammars always

yield infinite languages?

Some legal expressions:
§ 2
§ (3 + 34)
§ ((4+23) + 89)

Some illegal expressions:
§ (3
§ 3 + 4

Tokens of this grammar:
(+) and any integer

Parsing
32

Use a grammar in two ways:
¨ A grammar defines a

language (i.e. the set of
properly structured
sentences)

¨ A grammar can be used to
parse a sentence (thus,
checking if a string is a
sentence is in the language)

To parse a sentence is to build a
parse tree: much like
diagramming a sentence

� Example: Show that
((4+23) + 89)

is a valid expression E by
building a parse tree

E

(E)E+

89
(E)E+

4 23

E ® integer
E ® (E + E)

Ambiguity
33

Grammar is ambiguous if it
allows two parse trees for a
sentence. The grammar below,
using no parentheses, is
ambiguous. The two parse trees
to right show this. We don’t
know which + to evaluate first
in the expression 1 + 2 + 3

E

E E+

E E+

1 2

E ® integer
E ® E + E

3
33

E

E E

+ E E +

1 2 3

Recursive descent parsing
34

Write a set of mutually recursive methods to check if a sentence
is in the language (show how to generate parse tree later).

One method for each nonterminal of the grammar. The method is
completely determined by the rules for that nonterminal. On the
next pages, we give a high-level version of the method for
nonterminal E:

E ® integer
E ® (E + E)

Parsing an E
35

/** Unprocessed input starts an E. Recognize that E, throwing
away each piece from the input as it is recognized.
Return false if error is detected and true if no errors.
Upon return, processed tokens have been removed from input. */

public boolean parseE()

E ® integer
E ® (E + E)

(2 + (4 + 8)) + 9)

before call: already processed unprocessed

(2 + (4 + 8)) + 9)

after call: already processed unprocessed
(call returns true)

Expression trees: Class Hierarchy
36

Expr

Int

Sum

Negation BinaryExpression

Product Quotient

(interface)

(abstract)

public interface Expr {
String infix(); // returns an infix representation
int eval(); // returns the value of the expression
// could easily also include prefix, postfix

}

10/2/17

7

Specification: /** Unprocessed input starts an E. …*/

37

public boolean parseE() {
if (first token is an integer) remove it from input and return true;
if (first token is not ‘(‘) return false else remove it from input;
if (!parseE()) return false;
if (first token is not ‘+‘) return false else remove it from input;
if (!parseE()) return false;
if (first token is not ‘)‘) return false else remove it from input;
return true;

}

E ® integer
E ® (E + E)

Illustration of parsing to check syntax
38

E ® integer
E ® (E + E)

(1 + (2 + 4))

E

E E

The scanner constructs tokens
39

An object scanner of class Scanner is in charge of the input
String. It constructs the tokens from the String as necessary.
e.g. from the string “1464+634” build the token “1464”, the
token “+”, and the token “634”.
It is ready to work with the part of the input string that has not
yet been processed and has thrown away the part that is
already processed, in left-to-right fashion.

already processed unprocessed

(2 + (4 + 8) + 9)

Change parser to generate a tree
40

/** … Return an Expr for an E , or null if the string is illegal */

public Expr parseE() {
if (next token is integer) {

int val= the value of the token;
remove the token from the input;
return new Int(val);

}
if (next token is ‘(‘) remove it; else return null;
Expr e1 = parseE();
if (next token is ‘+’) remove it; else return null;
Expr e2 = parseE();
if (next token is ‘)’) remove it; else return null;
return new Sum(e1, e2);

}

E ® integer
E ® (E + E)

Grammar that gives precedence to * over +

41

E -> T { + T }
T -> F { * F }
F -> integer
F -> (E)

2 + 3 * 4
says do * first

T

E

Notation: { xxx } means
0 or more occurrences of xxx.

E: Expression T: Term
F: Factor

F

T

F F

T

E

F

T

F F

2 + 3 * 4
Try to do + first, can’t complete tree

Does recursive descent always work?
42

Some grammars cannot be used for recursive descent
Trivial example (causes infinite recursion):

S ® b
S ® Sa

Can rewrite grammar
S ® b
S ® bA
A ® a
A ® aA

For some constructs, recur-
sive descent is hard to use

Other parsing techniques
exist – take the compiler
writing course

