
ASYMPTOTIC COMPLEXITY 
Lecture 10 

CS2110 – Fall 2017 

 
“Progress is made by lazy men looking for easier ways to  
  do things.” 

                - Robert Heinlein 
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•  A3 due Friday 
•  Prelim next Thursday 

•  Prelim conflicts: fill out CMS by Friday  
•  Review section on Sunday 



What Makes a Good Algorithm? 
3 

Suppose you have two possible algorithms that do the 
same thing; which is better? 

What do we mean by better? 
¤  Faster? 
¤  Less space? 
¤  Easier to code? 
¤  Easier to maintain? 
¤  Required for homework? 

FIRST, Aim for simplicity, 
ease of understanding, 
correctness.  
 
SECOND, Worry about 
efficiency only when it is 
needed. 

How do we measure speed of an algorithm? 



Basic Step: one “constant time” operation 
4 

Basic step: 
¤  Input/output of a number 
¤  Access value of primitive-type variable, array element, or 

object field 
¤  assign to variable, array element, or object field  
¤  do one arithmetic or logical operation 
¤  method call (not counting arg evaluation and execution of 

method body) 

Constant time operation: its time doesn’t depend on the size 
or length of anything. Always roughly the same. Time is 
bounded above by some number  



Counting Steps 
5 

// Store sum of 1..n in sum 
sum= 0; 
// inv: sum = sum of 1..(k-1) 
for (int k= 1; k <= n; k= k+1){ 
    sum= sum + k; 
} 

All basic steps take time 1. 
There are n loop iterations. 
Therefore, takes time 
proportional to n. 

Statement:   # times done 
sum= 0;   1 
k= 1;    1 
k <= n    n+1 
k= k+1;   n 
sum= sum + k;  n 
Total steps:   3n + 3 
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Linear algorithm in n 



Statement:   # times done 
s= "";    1 
k= 1;    1 
k <= n    n+1 
k= k+1;   n 
s= s + 'c';   n 
Total steps:   3n + 3 

Not all operations are basic steps 
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// Store n copies of ‘c’ in s  
s= ""; 
// inv: s contains k-1 copies of ‘c’ 
for (int k= 1; k <= n; k= k+1){ 
    s=  s + 'c'; 
} 

Concatenation is not a basic 
step. For each k, catenation 
creates and fills k array 
elements.  

❌ 
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String Concatenation 
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s= s + “c”;    is NOT constant time. 
It takes time proportional to 1 + length of s 

   s 

1 ‘x’ 
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Statement:   # times done 
s= "";    1 
k= 1;    1 
k <= n    n+1 
k= k+1;   n 
s= s + 'c';   n 
Total steps:   3n + 3 

Not all operations are basic steps 
8 

// Store n copies of ‘c’ in s  
s= ""; 
// inv: s contains k-1 copies of ‘c’ 
for (int k= 1; k <= n; k= k+1){ 
    s=  s + 'c'; 
} 

Concatenation is not a basic 
step. For each k, catenation 
creates and fills k array 
elements.  

Statement:  # times     # steps  
s= "";   1      1  
k= 1;   1      1 
k <= n   n+1      1 
k= k+1;  n      1 
s= s + 'c';  n      k 
Total steps:      n*(n-1)/2 + 2n + 3 
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Quadratic algorithm in n 



Linear versus quadractic 
9 

// Store sum of 1..n in sum 
sum= 0; 
// inv: sum = sum of 1..(k-1) 
for (int k= 1; k <= n; k= k+1) 
    sum= sum + n 

// Store n copies of ‘c’ in s  
s= “”; 
// inv: s contains k-1 copies of ‘c’ 
for (int k= 1; k <= n; k= k+1) 
    s=  s + ‘c’; 

In comparing the runtimes of these algorithms, the exact number 
of basic steps is not important. What’s important is that 

One is linear in n—takes time proportional to n 
One is quadratic in n—takes time proportional to n2 

Linear algorithm Quadratic algorithm 



Looking at execution speed 
10 

size n of the array 0  1  2  3  … 

Number of 
operations 
executed 

Constant time 

n ops 

n + 2 ops 

2n + 2 ops 
n*n ops 

2n+2, n+2, n are all linear in n, 
proportional to n 



What do we want from a  
definition of “runtime complexity”? 
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size n of problem 0  1  2  3  … 

Number of 
operations 
executed 

5 ops 

2+n ops 

n*n ops 

1. Distinguish among cases 
for large n, not small n 

2. Distinguish among 
important cases, like 
•  n*n basic operations 
•  n basic operations 
•  log n basic operations 
•  5 basic operations 

3. Don’t distinguish among 
trivially different cases. 
• 5 or 50 operations 
• n, n+2, or 4n operations 



"Big O" Notation 
12 

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 

c·g(n) 

f(n) 

N 

Get out far enough 
(for n ≥ N) 
f(n) is at most c·g(n) 

Intuitively, f(n) is O(g(n)) 
means that f(n) grows 
like g(n) or slower 



Prove that (n2 + n) is O(n2) 

Example: Prove that (2n2 + n) is O(n2) 
 
Methodology: 
 
Start with f(n) and slowly transform into c · g(n): 
¨   Use  =   and  <=  and  <  steps 
¨     At appropriate point, can choose N to help calculation 
¨     At appropriate point, can choose c to help calculation 
  

13 

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 



Prove that (n2 + n) is O(n2) 

Example: Prove that (2n2 + n) is O(n2) 
        f(n) 
=         <definition of f(n)> 
         2n2 + n 
<=       <for n ≥ 1,  n ≤ n2> 
         2n2 + n2 
=          <arith> 
          3*n2 

=           <definition of g(n) = n2> 
                3*g(n) 
  

14 

Choose 
N = 1 and c = 3 

Transform f(n) into c·g(n): 
• Use  =, <= , <  steps 
• Choose N to help calc. 
• Choose c to help calc 

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 



Prove that 100 n + log n   is   O(n) 

15 

      f(n) 
=         <put in what f(n) is> 

      100 n  +   log n 

<=        <We know log n ≤ n for n ≥ 1> 

      100 n + n 

=         <arith> 
     101 n 
=         <g(n) = n> 
       101 g(n) 

Choose 
N = 1 and c = 101 

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 



O(…) Examples 
16 

Let f(n) = 3n2 + 6n – 7 
¤ f(n) is O(n2) 
¤ f(n) is O(n3) 
¤ f(n) is O(n4) 
¤ … 

p(n) = 4 n log n + 34 n – 89 
¤ p(n) is O(n log n) 
¤ p(n) is O(n2) 

h(n) = 20·2n + 40n 
h(n) is O(2n) 

a(n) = 34 
¤ a(n) is O(1) 

Only the leading term (the 
term that grows most 
rapidly) matters 

If it’s O(n2), it’s also O(n3) 
etc!  However, we always 
use the smallest one 



Do NOT say or write f(n) = O(g(n)) 

17 

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster. 
You see it sometimes, even in textbooks. Don’t read such things. 

Here’s an example to show what happens when we use = this way. 
 
     We know that n+2 is O(n) and n+3 is O(n). Suppose we use = 
 
               n+2 = O(n) 
               n+3 = O(n) 
But then, by transitivity of equality, we have n+2 = n+3. 
We have proved something that is false. Not good. 

Formal definition: f(n) is O(g(n)) if there exist constants c > 0 
and N ≥ 0 such that for all n ≥ N,   f(n) ≤ c·g(n) 



Problem-size examples 
18 

¨  Suppose a computer can execute 1000 operations 
per second; how large a problem can we solve? 

operations 1 second 1 minute 1 hour 

n 1000 60,000 3,600,000 
n log n 140 4893 200,000 

n2 31 244 1897 
3n2 18 144 1096 
n3 10 39 153 
2n 9 15 21 



Commonly Seen Time Bounds 
19 

O(1) constant excellent 
O(log n) logarithmic excellent 

O(n) linear good 
O(n log n) n log n pretty good 

O(n2) quadratic maybe OK 
O(n3) cubic maybe OK 
O(2n) exponential too slow 



Big O Poll 

Consider two different data structures that could store your data: an array or 
a doubly-linked list. In both cases, let n be the size of your data structure (i.e., 
the number of elements it is currently storing). What is the running time of each 
of the following operations: 

 

•  get(i) using an array 

•  get(i) using a DLL 

•  insert(v) using an array 

•  insert(v) using a DLL 

20 

a                               



Java Lists 

¨  java.util defines an interface List<E> 
¨  implemented by multiple classes: 

¤ ArrayList 
¤ LinkedList 

21 



Search for v in b[0..] 
22 

Methodology: 
1.  Define pre and post 

conditions. 
2.  Draw the invariant as a 

combination of pre and 
post. 

3.  Develop loop using 4 
loopy questions. 

Practice doing this! 

// Store in i the index of the first occurrence of v in array b 
// Precondition: v is in b. 



  inv: b     != v     v in here                           
0           i                  b.length 

Search for v in b[0..] 
23 

// Store in i the index of the first occurrence of v in array b 
// Precondition: v is in b. 

Methodology: 
1.  Define pre and post 

conditions. 
2.  Draw the invariant as a 

combination of pre and 
post. 

3.  Develop loop using 4 
loopy questions. 

Practice doing this! 

post: b     != v    v       ?                          
0           i                  b.length 

pre: b                                             
0                               b.length 

v in here 



The Four Loopy Questions 

¨  Does it start right?  
Is {Q} init {P} true? 

¨  Does it continue right? 
Is {P && B} S {P} true? 

¨  Does it end right?  
Is P && !B => R true? 

¨  Will it get to the end?  
Does it make progress 
toward termination? 

24 



Search for v in b[0..] 
25 

// Store in i the index of the first occurrence of v in array b 
// Precondition: v is in b. 

while  (              ) { 
 
} 

i= 0; 
b[i] != v 

i= i+1; 

Each iteration takes 
constant time. 

Worst case: b.length-1 
iterations Linear algorithm: O(b.length) 

  inv: b     != v     v in here                           
0           i                  b.length 

post: b     != v    v       ?                          
0           i                  b.length 

pre: b                                             
0                               b.length 

v in here 



Search for v in sorted b[0..] 
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// Store in i to truthify b[0..i] <= v < b[i+1..] 
// Precondition: b is sorted. 

Methodology: 
1.  Define pre and post 

conditions. 
2.  Draw the invariant as a 

combination of pre and 
post. 

3.  Develop loop using 4 
loopy questions. 

Practice doing this! 

post: b     <= v          > v                               
0             i                b.length 

pre: b                                             
0                               b.length 

sorted 

  inv: b  <= v                > v                               
0      i               k       b.length 

sorted 



Another way to search for v in b[0..] 
27 

// Store in i to truthify  b[0..i]  <=  v  <  b[i..] 
// Precondition: b is sorted. 

while  (           ) { 
 
 
 
 
} 

i= -1; 
k= b.length; 

i < k-1 
int j=  (i+k)/2; 
// i < j < k 
if (b[j] <= v)  i=  j; 
else  k=  j; 

post: b     <= v          > v                               
0             i                b.length 

pre: b                                             
0                               b.length 

sorted 

  inv: b  <= v                > v                               
0      i               k       b.length 

sorted 

b   <= v                                     > v                     j = (i+k)/2          
0      i                j                  k            b.length 



Another way to search for v in b[0..] 
28 

// Store in i to truthify  b[0..i]  <=  v  <  b[i..] 
// Precondition: b is sorted. 

while  (           ) { 
 
 
 
 
} 

i= -1; 
k= b.length; 

i < k-1 
int j=  (i+k)/2; 
// i < j < k 
if (b[j] <= v)  i=  j; 
else  k=  j; 

Each iteration takes constant time. 
Worst case: log(b.length) 

iterations 
Logarithmic: O(log(b.length)) 

post: b     <= v          > v                               
0             i                b.length 

pre: b                                             
0                               b.length 

sorted 

  inv: b  <= v                > v                               
0      i               k       b.length 

sorted 



Another way to search for v in b[0..] 
29 

// Store in i to truthify b[0..i] <= v < b[i+1..] 
// Precondition: b is sorted. 

while  (           ) { 
 
 
 
 
} 

i= 0; 
k= b.length; 

i < k-1 

Logarithmic: O(log(b.length)) 

  inv: b                               
0    i      j        k        b.length 

≥𝑣 <𝑣 

post: b                               
0              i               b.length 
<𝑣                ≥𝑣 

pre: b                                             
0                               b.length 

? 
This algorithm is better than binary 
searches that stop when v is found. 
1.  Gives good info when v not in b. 
2.  Works when b is empty. 
3.  Finds last occurrence of v, not 

arbitrary one. 
4.  Correctness, including making 

progress, easily seen using invariant  

int j=  (i+k)/2; 
// i < j < k 
if (b[j] <= v)  i=  j; 
else  k=  j; 



Dutch National Flag Algorithm 
30 



Dutch national flag. Swap b[0..n-1] to put the reds first, then 
the whites, then the blues.  That is, given precondition Q, swap 
values of b[0.n] to truthify postcondition R:  

                    ?  

0                                                          n 
Q: b 

 reds            whites             blues   

0                                                          n 
R: b 

Dutch National Flag Algorithm 

 reds      whites       blues        ?   

0                                                          n 
P1: b 

 reds      whites          ?           blues   

0                                                          n 
P2: b 



                    ?  
0                                                n 

Q: b 

 reds         whites         blues   
0                                                n 

R: b 

Dutch National Flag Algorithm: invariant P1 

 reds   whites     blues        ?   
0                                                n 

P1: b 
h            k            p 

h= 0; k= h; p= k; 
while (           ) { 
 
 
 
 
 
 
 
 
 
 
} 

p != n 
if (b[p] blue) 
else if (b[p] white) { 
     
 
} 
else { // b[p] red 
 
 
 
} 

p=  p+1; 

swap b[p], b[k]; 
p= p+1; k= k+1; 

swap b[p], b[h]; 
swap b[p], b[k]; 
p= p+1; h=h+1; k= k+1; 



                    ?  
0                                                n 

Q: b 

 reds         whites         blues   
0                                                n 

R: b 
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Dutch National Flag Algorithm: invariant P2 

 reds   whites      ?          blues   
0                                                n 

P2: b 
h            k            p 

h= 0; k= h; p= n; 
while (           ) { 
 
 
 
 
 
 
 
 
 
} 

k != p 

if (b[k] white) 
else if (b[k] blue) { 
     
 
} 
else { // b[k] is red 
 
 
} 

k=  k+1; 

p= p-1; 
swap b[k], b[p]; 

swap b[k], b[h]; 
h= h+1; k= k+1; 



Asymptotically, which algorithm is faster? 

Invariant 1 Invariant 2 

34 

 reds   whites     blues        ?   
0        h            k           p           n 

h= 0; k= h; p= k; 
while (           ) { 
 
 
 
 
 
 
 
 
 
 
} 

p != n 

if (b[p] blue) 
else if (b[p] white) { 
     
 
} 
else { // b[p] red 
 
 
 
} 

p=  p+1; 

swap b[p], b[k]; 
p= p+1; k= k+1; 

swap b[p], b[h]; 
swap b[p], b[k]; 
p= p+1; h=h+1; k= k+1; 

 reds   whites      ?          blues   
0       h             k            p          n 

h= 0; k= h; p= n; 
while (           ) { 
 
 
 
 
 
 
 
 
 
 
} 

if (b[k] white) 
else if (b[k] blue) { 
     
 
} 
else { // b[k] is red 
 
 
} 

k=  k+1; 

p= p-1; 
swap b[k], b[p]; 

swap b[k], b[h]; 
h= h+1; k= k+1; 

k != p 



Asymptotically, which algorithm is faster? 

Invariant 1 Invariant 2 
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 reds   whites     blues        ?   
h= 0; k= h; p= k; 
while (           ) { 
 
 
 
 
 
 
 
 
 
 
} 

p != n 

if (b[p] blue) 
else if (b[p] white) { 
     
 
} 
else { // b[p] red 
 
 
 
} 

p=  p+1; 

swap b[p], b[k]; 
p= p+1; k= k+1; 

swap b[p], b[h]; 
swap b[p], b[k]; 
p= p+1; h=h+1; k= k+1; 

 reds   whites      ?          blues   
h= 0; k= h; p= n; 
while (           ) { 
 
 
 
 
 
 
 
 
 
 
} 

if (b[k] white) 
else if (b[k] blue) { 
     
 
} 
else { // b[k] is red 
 
 
} 

k=  k+1; 

p= p-1; 
swap b[k], b[p]; 

swap b[k], b[h]; 
h= h+1; k= k+1; 

k != p might use 2 swaps per iteration uses at most 1 swap per iteration 

These two algorithms have the same asymptotic running time 
(both are O(n)) 

0        h            k           p           n 0       h             k            p          n 


