"Progress is made by lazy men looking for easier ways to do things."

- Robert Heinlein

ASYMPTOTIC COMPLEXITY

Announcements

- A3 due Friday
- Prelim next Thursday
- Prelim conflicts: fill out CMS by Friday
- Review section on Sunday

What Makes a Good Algorithm?

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?
\square Faster?
\square Less space?
\square Easier to code?

- Easier to maintain?
\square Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

\square Input/output of a number
\square Access value of primitive-type variable, array element, or object field

- assign to variable, array element, or object field
\square do one arithmetic or logical operation
\square method call (not counting arg evaluation and execution of method body)

Counting Steps

```
// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k<= n; k= k+1){
    sum=sum + k;
}
```

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n .

Statement:	\# times done
sum $=0 ;$	1
$\mathrm{k}=1 ;$	1
$\mathrm{k}<=\mathrm{n}$	$\mathrm{n}+1$
$\mathrm{k}=\mathrm{k}+1 ;$	n
$\frac{\text { sum }=\text { sum }+\mathrm{k} ;}{}$	$\frac{\mathrm{n}}{3 \mathrm{n}+3}$
Total steps:	

Statement:
sum $=0 ;$
$\mathrm{k}=1$;
1
$\mathrm{k}<=\mathrm{n} \quad \mathrm{n}+1$
$\mathrm{k}=\mathrm{k}+1$;
$\frac{n}{3 n+3}$

Linear algorithm in \mathbf{n}

0	20	40	60	80	100

Not all operations are basic steps

// Store n copies of ' c ' in s
s= "";
// inv: s contains k-1 copies of 'c'
for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) $\{$

$$
\mathrm{s}=\mathrm{s}+\mathrm{c} \text { ' }
$$

\}

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.

String Concatenation

$\mathrm{s}=\mathrm{s}+$ "c"; is NOT constant time.
It takes time proportional to $1+$ length of s

Not all operations are basic steps

Statement:	\# times	\# steps
s= " ";	1	1
k=1;	1	1
$\mathrm{k}<=\mathrm{n}$	$\mathrm{n}+1$	1
$\mathrm{k}=\mathrm{k}+1$;	n	1
$\mathrm{s}=\mathrm{s}+\mathrm{c}$ ',	n	k
Total steps:	n*(n-	/2 $+2 n$

// Store n copies of ' c ' in s
s= "";
// inv: s contains $\mathrm{k}-1$ copies of ' c ' for (int $\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1$) $\{$

$$
\mathrm{s}=\mathrm{s}+\mathrm{c} \mathrm{c} \text { '; }
$$

$$
\}
$$

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.

Linear versus quadractic

$$
\begin{aligned}
& \text { // Store sum of } 1 . . n \text { in sum } \\
& \text { sum= } 0 \text {; } \\
& \text { // inv: sum }=\text { sum of } 1 . .(k-1) \\
& \text { for (int } k=1 ; k<=n ; k=k+1) \\
& \quad \text { sum= sum }+n
\end{aligned}
$$

Linear algorithm

$$
\begin{aligned}
& \text { // Store } \mathrm{n} \text { copies of ' } \mathrm{c} \text { ' in } \mathrm{s} \\
& \mathrm{~s}=\text { ''"'; } \\
& \text { // inv: } \mathrm{s} \text { contains } \mathrm{k}-1 \text { copies of ' } \mathrm{c} \text { ' } \\
& \text { for (int } \mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}=\mathrm{k}+1 \text {) } \\
& \quad \mathrm{s}=\mathrm{s}+\text { ' } \mathrm{c} \text { '; }
\end{aligned}
$$

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that

One is linear in n-takes time proportional to n One is quadratic in n-takes time proportional to n^{2}

Looking at execution speed

Number of operations executed
$2 \mathrm{n}+2, \mathrm{n}+2, \mathrm{n}$ are all linear in n , proportional to n
$2 \mathrm{n}+2 \mathrm{ops}$
$\mathrm{n}+2 \mathrm{ops}$
n ops

Constant time
$0123 \ldots$ size n of the array

What do we want from a definition of "runtime complexity"?

1. Distinguish among cases for large n, not small n
2. Distinguish among important cases, like

- $\mathrm{n} * \mathrm{n}$ basic operations
- n basic operations
- $\log n$ basic operations
- 5 basic operations

3. Don't distinguish among trivially different cases.
-5 or 50 operations
$\cdot \mathrm{n}, \mathrm{n}+2$, or 4 n operations

"Big O" Notation

> Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq N, \quad \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Prove that $\left(n^{2}+n\right)$ is $O\left(n^{2}\right)$

> Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Example: Prove that $\left(2 n^{2}+n\right)$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Methodology:

Start with $\mathrm{f}(\mathrm{n})$ and slowly transform into $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$:
$\square \quad$ Use $=$ and $<=$ and $<$ steps
\square At appropriate point, can choose N to help calculation
\square At appropriate point, can choose c to help calculation

Prove that $\left(n^{2}+n\right)$ is $O\left(n^{2}\right)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

Example: Prove that $\left(2 n^{2}+n\right)$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \\
& =\quad<\text { definition of } f(n)> \\
& 2 n^{2}+n \\
& <=\quad<\text { for } n \geq 1, n \leq n^{2}> \\
& 2 n^{2}+n^{2} \\
& =\quad \text { <arith }> \\
& 3^{*} n^{2} \\
& =\quad<\text { definition of } \mathrm{g}(\mathrm{n})=\mathrm{n}^{2}> \\
& \text { 3*g(n) }
\end{aligned}
$$

Transform $f(n)$ into $c \cdot g(n)$:
-Use $=,<=,<$ steps
-Choose N to help calc.
-Choose c to help calc

$$
\begin{array}{|l|}
\hline \text { Choose } \\
\mathrm{N}=1 \text { and } \mathrm{c}=3 \\
\hline
\end{array}
$$

Prove that $100 n+\log n$ is $O(n)$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \\
& =\quad \text { <put in what } f(n) \text { is> } \\
& 100 n+\log n \\
& <=\quad<\text { We know } \log n \leq n \text { for } n \geq 1> \\
& 100 n+n \\
& =\quad \text { <arith }> \\
& 101 \text { n } \\
& =\quad<g(n)=n> \\
& 101 \mathrm{~g}(\mathrm{n})
\end{aligned}
$$

O(...) Examples

```
Let \(f(n)=3 n^{2}+6 n-7\)
    \(\square f(n)\) is \(O\left(n^{2}\right)\)
    \(\square f(n)\) is \(O\left(n^{3}\right)\)
    \(\square f(n)\) is \(O\left(n^{4}\right)\)
    - ...
\(p(n)=4 n \log n+34 n-89\)
    \(\square p(n)\) is \(O(n \log n)\)
    \(\square p(n)\) is \(O\left(n^{2}\right)\)
\(h(n)=20 \cdot 2^{n}+40 n\)
    \(h(n)\) is \(O\left(2^{n}\right)\)
\(a(n)=34\)
    \(\square a(n)\) is \(O(1)\)
```

Only the leading term (the term that grows most rapidly) matters

If it's $O\left(n^{2}\right)$, it's also $O\left(n^{3}\right)$ etc! However, we always use the smallest one

Do NOT say or write $f(n)=O(g(n))$

Formal definition: $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$ if there exist constants $\mathrm{c}>0$ and $\mathrm{N} \geq 0$ such that for all $\mathrm{n} \geq \mathrm{N}, \mathrm{f}(\mathrm{n}) \leq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
$\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.

Here's an example to show what happens when we use = this way.
We know that $\mathrm{n}+2$ is $\mathrm{O}(\mathrm{n})$ and $\mathrm{n}+3$ is $\mathrm{O}(\mathrm{n})$. Suppose we use $=$

$$
\begin{aligned}
& \mathrm{n}+2=O(\mathrm{n}) \\
& \mathrm{n}+3=O(\mathrm{n})
\end{aligned}
$$

But then, by transitivity of equality, we have $\mathrm{n}+2=\mathrm{n}+3$.
We have proved something that is false. Not good.

Problem-size examples

\square Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

operations	1 second	1 minute	1 hour
n	1000	60,000	$3,600,000$
n log n	140	4893	200,000
n^{2}	31	244	1897
$3 \mathrm{n}^{2}$	18	144	1096
n^{3}	10	39	153
2^{n}	9	15	21

Commonly Seen Time Bounds

$\mathrm{O}(1)$	constant	excellent
$\mathrm{O}(\log \mathrm{n})$	logarithmic	excellent
$\mathrm{O}(\mathrm{n})$	linear	good
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	n log n	pretty good
$\mathrm{O}\left(\mathrm{n}^{2}\right)$	quadratic	maybe OK
$\mathrm{O}\left(\mathrm{n}^{3}\right)$	cubic	maybe OK
$\mathrm{O}\left(2^{\mathrm{n}}\right)$	exponential	too slow

Big O Poll

Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let n be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

- get(i) using an array
- get(i) using a DLL
- insert(v) using an array
- insert(v) using a DLL

Java Lists

\square java.util defines an interface List<E>
\square implemented by multiple classes:
\square ArrayList
\square LinkedList

Search for v in b[0..]

> // Store in i the index of the first occurrence of v in array b
> // Precondition: v is in b .

Methodology:

1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!

Search for v in b[0..]

```
// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.
```


Methodology:

1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!

The Four Loopy Questions

\square Does it start right?
Is $\{Q\}$ init $\{P\}$ true?
\square Does it continue right?

Is $\{P \& \& B\} S\{P\}$ true?
\square Does it end right?
Is P \& \& ! $B=>R$ true?
\square Will it get to the end?
Does it make progress
toward termination?

Search for vin b[0..]

// Store in ithe index of the first occurrence of v in array b
// Precondition: v is in b .

$$
\left.\begin{array}{l}
\mathrm{i}=0 \\
\text { while }(\mathrm{b}[\mathrm{i}]!=\mathrm{v})\{ \\
\quad \mathrm{i}=\mathrm{i}+1 ;
\end{array}\right\} \begin{aligned}
& \text { Each iteration takes } \\
& \quad \text { constant time. }
\end{aligned}
$$

Worst case: b.length-1 iterations

Search for v in sorted b[0..]

```
// Store in i to truthify b[0..i] <= v < b[i+1..]
// Precondition: b is sorted.
```


Methodology:

1. Define pre and post conditions.
2. Draw the invariant as a combination of pre and post.
3. Develop loop using 4 loopy questions.

Practice doing this!

Another way to search for v in $\mathrm{b}[0 .$.

// Store in i to truthify $\mathrm{b}[0 . . \mathrm{i}]<=\mathrm{v}<\mathrm{b}[\mathrm{i} .$.
// Precondition: b is sorted.

\[

\]

$$
\begin{aligned}
& \mathrm{i}=-1 ; \\
& \mathrm{k}=\mathrm{b} . \text { length; } \\
& \text { while }(\mathrm{i}<\mathrm{k}-1)\{ \\
& \quad \text { int } \mathrm{j}=(\mathrm{i}+\mathrm{k}) / 2 ; \\
& \quad / \mathrm{i}<\mathrm{j}<\mathrm{k} \\
& \quad \text { if }(\mathrm{b}[\mathrm{j}]<=\mathrm{v}) \mathrm{i}=\mathrm{j} ; \\
& \quad \text { else } \mathrm{k}=\mathrm{j} ; \\
& \}
\end{aligned}
$$

b.length

$$
\mathrm{j}=(\mathrm{i}+\mathrm{k}) / 2
$$

Another way to search for v in $\mathrm{b}[0 .$.

// Store in i to truthify b[0..i] $<=\mathrm{v}<\mathrm{b}[\mathrm{i} .$.
// Precondition: b is sorted.

Each iteration takes constant time.
Logarithmic: O(log(b.length))
Worst case: \log (b.length) iterations

Another way to search for v in $\mathrm{b}[0 .$.

$/ /$ Store in i to truthify $\mathrm{b}[0 . . \mathrm{i}]<=\mathrm{v}<\mathrm{b}[\mathrm{i}+1 .$.
// Precondition: b is sorted.

This algorithm is better than binary searches that stop when v is found.

1. Gives good info when v not in b.
2. Works when b is empty.
3. Finds last occurrence of v, not arbitrary one.
4. Correctness, including making progress, easily seen using invariant
$\mathrm{i}=0$;
$\mathrm{k}=\mathrm{b}$.length;
while $(\mathrm{i}<\mathrm{k}-1)$ \{
int $\mathrm{j}=(\mathrm{i}+\mathrm{k}) / 2$;
$/ / \mathrm{i}<\mathrm{j}<\mathrm{k}$
if $(b[j]<=v) i=j$; else $\mathrm{k}=\mathrm{j}$;

Logarithmic: O(log(b.length))

Dutch National Flag Algorithm

Dutch National Flag Algorithm

Dutch national flag. Swap $\mathrm{b}[0 . . \mathrm{n}-1]$ to put the reds first, then the whites, then the blues. That is, given precondition Q , swap values of $\mathrm{b}[0 . \mathrm{n}]$ to truthify postcondition R :

$\mathrm{R}: \mathrm{b}$	b	reds	whites
		blues	

0			
P1: b reds	whites	blues	?

0
P2: b
 reds whites $?$ blues

Dutch National Flag Algorithm: invariant P1

Dutch National Flag Algorithm: invariant P2

Asymptotically, which algorithm is faster?

Invariant 1

0	h	k	p	n	0	h	k	
re	whites	blues	?		reds	whites	?	blues

$$
\mathrm{h}=0 ; \mathrm{k}=\mathrm{h} ; \mathrm{p}=\mathrm{k} ;
$$

$$
\text { while }(\mathrm{p}!=\mathrm{n})\{
$$

$$
\text { if }(\mathrm{b}[\mathrm{p}] \text { blue }) \quad \mathrm{p}=\mathrm{p}+1
$$

else if (b[p] white) \{

$$
\text { swap } \mathrm{b}[\mathrm{p}], \mathrm{b}[\mathrm{k}] \text {; }
$$

$$
\mathrm{p}=\mathrm{p}+1 ; \mathrm{k}=\mathrm{k}+1
$$

\}
else $\{/ / \mathrm{b}[\mathrm{p}]$ red
swap $\mathrm{b}[\mathrm{p}], \mathrm{b}[\mathrm{h}]$;
swap b[p], b[k];

$$
\mathrm{p}=\mathrm{p}+1 ; \mathrm{h}=\mathrm{h}+1 ; \mathrm{k}=\mathrm{k}+1
$$

Invariont 2

$\mathrm{h}=0 ; \mathrm{k}=\mathrm{h} ; \mathrm{p}=\mathrm{n}$;
while $(\mathrm{k}!=\mathrm{p})$ \{
if ($\mathrm{b}[\mathrm{k}]$ white) $\mathrm{k}=\mathrm{k}+1$; else if ($b[k]$ blue) $\{$
$\mathrm{p}=\mathrm{p}-1$;
swap b[k], b[p];
\}
else $\{/ / b[k]$ is red
swap b[k], b[h];
$\mathrm{h}=\mathrm{h}+1 ; \mathrm{k}=\mathrm{k}+1$;

Asymptotically, which algorithm is faster?

Invariant 1

0	h	k	p
reds	whites	blues	

might use 2 swaps per iteration

Invariont 2

0	h	k	p
reds	whites	$?$	blues

uses at most 1 swap per iteration

```
    if ( \(\mathrm{b}[\mathrm{p}]\) blue ) \(\quad \mathrm{p}=\mathrm{p}+1\);
    else if (b[p] white) \{
        swap b[p], b[k];
            if \((b[k]\) white \() \quad k=k+1\);
else if \((b[k]\) blue \()\{\)
\(\quad \mathrm{p}=\mathrm{p}-1\);
```

These two algorithms have the same asymptotic running time (both are $O(n)$)

```
swap b[p], b[h];
    swap b[p], b[k];
    p=p+1;h=h+1; k= k+1;
```

 swap \(\mathrm{b}[\mathrm{k}], \mathrm{b}[\mathrm{h}]\);
 $$
\mathrm{h}=\mathrm{h}+1 ; \mathrm{k}=\mathrm{k}+1 ;
$$

