"Progress is made by lazy men looking for easier ways to do things."

- Robert Heinlein

ASYMPTOTIC COMPLEXITY

Lecture 10 CS2110 – Fall 2017

Announcements

2

- A3 due Friday
- Prelim next Thursday
 - Prelim conflicts: fill out CMS by Friday
 - Review section on Sunday

What Makes a Good Algorithm?

3

Suppose you have two possible algorithms that do the same thing; which is better?

What do we mean by better?

- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?

FIRST, Aim for simplicity, ease of understanding, correctness.

SECOND, Worry about efficiency only when it is needed.

How do we measure speed of an algorithm?

Basic Step: one "constant time" operation

Constant time operation: its time doesn't depend on the size or length of anything. Always roughly the same. Time is bounded above by some number

Basic step:

- Input/output of a number
- Access value of primitive-type variable, array element, or object field
- assign to variable, array element, or object field
- do one arithmetic or logical operation
- method call (not counting arg evaluation and execution of method body)

Counting Steps

// Store sum of 1..n in sum
sum= 0;
// inv: sum = sum of 1..(k-1)
for (int k= 1; k <= n; k= k+1){
 sum= sum + k;
}</pre>

Statement:	<u># times done</u>
sum= 0;	1
k= 1;	1
k <= n	n+1
k = k + 1;	n
sum = sum + k;	<u>n</u>
Total steps:	3n + 3

All basic steps take time 1. There are n loop iterations. Therefore, takes time proportional to n.

Not all operations are basic steps

// Store n copies of 'c' in s
s= "";
// inv: s contains k-1 copies of 'c'
for (int k= 1; k <= n; k= k+1){
 s= s + 'c';
}</pre>

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.

String Concatenation

Not all operations are basic steps

// Store n copies of 'c' in s	Statement:	# times	# steps
s= "";	s= "";	1	1
// inv: s contains k-1 copies of 'c'	k= 1;	1	1
for (int $k=1$; $k \le n$; $k=k+1$){	k <= n	n+1	1
	k = k + 1;	n	1
s = s + c';	s=s+'c';	n	k
}	Total steps:	n*(n-1	1)/2 + 2n + 3

Concatenation is not a basic step. For each k, catenation creates and fills k array elements.

Linear versus quadractic

9

// Store sum of 1..n in sum sum= 0; // inv: sum = sum of 1..(k-1) for (int k= 1; k <= n; k= k+1) sum= sum + n

Linear algorithm

// Store n copies of 'c' in s
s= "";
// inv: s contains k-1 copies of 'c'
for (int k= 1; k <= n; k= k+1)
s= s + 'c';</pre>

Quadratic algorithm

In comparing the runtimes of these algorithms, the exact number of basic steps is not important. What's important is that One is linear in n—takes time proportional to n One is quadratic in n—takes time proportional to n^2

Looking at execution speed

What do we want from a definition of "runtime complexity"?

1. Distinguish among cases for large n, not small n

2. Distinguish among important cases, like

- n*n basic operations
- n basic operations
- log n basic operations
- 5 basic operations

3. Don't distinguish among trivially different cases.

- •5 or 50 operations
- •n, n+2, or 4n operations

"Big O" Notation

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Prove that $(n^2 + n)$ is $O(n^2)$

13

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(2n^2 + n)$ is $O(n^2)$

Methodology:

Start with f(n) and slowly transform into $c \cdot g(n)$:

- \Box Use = and <= and < steps
- At appropriate point, can choose N to help calculation
- □ At appropriate point, can choose c to help calculation

Prove that $(n^2 + n)$ is $O(n^2)$

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

Example: Prove that $(2n^2 + n)$ is $O(n^2)$

f(n)

- = < definition of f(n) >2n² + n
- <= <for $n \ge 1$, $n \le n^2 > 2n^2 + n^2$
- = <arith>

3*n²

= g(n) = n^2 >
$$3^*g(n)$$

Transform f(n) into $c \cdot g(n)$:

- •Use =, <= , < steps
- •Choose N to help calc.
- •Choose c to help calc

Choose
$$N = 1$$
 and $c = 3$

15

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

f(n)

= <put in what f(n) is>

100 n + log n

 $<= \qquad < We know log n \le n \text{ for } n \ge 1 >$

100 n + n

= <arith>

101 n

Choose N = 1 and c = 101

O(...) Examples

```
16
```

```
Let f(n) = 3n^2 + 6n - 7
  \Box f(n) is O(n<sup>2</sup>)
  \Box f(n) is O(n<sup>3</sup>)
  \Box f(n) is O(n<sup>4</sup>)
  p(n) = 4 n \log n + 34 n - 89
  \square p(n) is O(n log n)
  \square p(n) is O(n<sup>2</sup>)
h(n) = 20 \cdot 2^n + 40n
  h(n) is O(2^n)
a(n) = 34
  □ a(n) is O(1)
```

Only the *leading* term (the term that grows most rapidly) matters

If it's O(n²), it's also O(n³) etc! However, we always use the smallest one

Do NOT say or write f(n) = O(g(n))

17

Formal definition: f(n) is O(g(n)) if there exist constants c > 0and $N \ge 0$ such that for all $n \ge N$, $f(n) \le c \cdot g(n)$

f(n) = O(g(n)) is simply WRONG. Mathematically, it is a disaster. You see it sometimes, even in textbooks. Don't read such things.

Here's an example to show what happens when we use = this way.

We know that n+2 is O(n) and n+3 is O(n). Suppose we use =

n+2 = O(n)n+3 = O(n)

But then, by transitivity of equality, we have n+2 = n+3. We have proved something that is false. Not good.

Problem-size examples

Suppose a computer can execute 1000 operations per second; how large a problem can we solve?

operations	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n ²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

19

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)	n log n	pretty good
O(n ²)	quadratic	maybe OK
O(n ³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Big O Poll

20

Consider two different data structures that could store your data: an array or a doubly-linked list. In both cases, let n be the size of your data structure (i.e., the number of elements it is currently storing). What is the running time of each of the following operations:

Java Lists

- java.util defines an interface List<E>
- implemented by multiple classes:
 - ArrayList
 - LinkedList

Search for v in b[0..]

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Methodology:

- 1. Define pre and post conditions.
- 2. Draw the invariant as a combination of pre and post.
- 3. Develop loop using 4 loopy questions.

Practice doing this!

Search for v in b[0..]

23

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Methodology:

- 1. Define pre and post conditions.
- 2. Draw the invariant as a combination of pre and post.
- 3. Develop loop using 4 loopy questions.

Practice doing this!

The Four Loopy Questions

- Does it start right?
 Is {Q} init {P} true?
- Does it continue right?
 - Is {P && B} S {P} true?
- Does it end right? Is P && !B => R true?
- □ Will it get to the end?

Does it make progress toward termination?

Search for v in b[0..]

25

// Store in i the index of the first occurrence of v in array b
// Precondition: v is in b.

Linear algorithm: O(b.length)

i= 0; while (b[i] != v) { i= i+1; }

Each iteration takes constant time. Worst case: b.length-1

iterations

Search for v in sorted b[0..]

26

Methodology:

- 1. Define pre and post conditions.
- Draw the invariant as a 2. combination of pre and post.
- Develop loop using 4 3. loopy questions.

Practice doing this!

Another way to search for v in b[0..]

Another way to search for v in b[0..]

29

// Store in i to truthify b[0..i] <= v < b[i+1..]
// Precondition: b is sorted.</pre>

This algorithm is better than binary searches that stop when v is found.

- 1. Gives good info when v not in b.
- 2. Works when b is empty.
- 3. Finds last occurrence of v, not arbitrary one.
- 4. Correctness, including making progress, easily seen using invariant

Logarithmic: O(log(b.length))

i= 0; k= b.length; while (i < k-1) { int j= (i+k)/2; // i < j < k if (b[j] <= v) i= j; else k= j; }

Dutch National Flag Algorithm

30

Dutch National Flag Algorithm

Dutch national flag. Swap b[0..n-1] to put the reds first, then the whites, then the blues. That is, given precondition Q, swap values of b[0.n] to truthify postcondition R:

Dutch National Flag Algorithm: invariant P1

h=0; k=h; p=k;while (p != n) { if (b[p] blue) p= p+1;else if (b[p] white) { swap b[p], b[k]; p=p+1; k=k+1;else { // b[p] red swap b[p], b[h]; swap b[p], b[k]; p=p+1; h=h+1; k= k+1;

Dutch National Flag Algorithm: invariant P2

h=0; k=h; p=n;while (k != p) { if (b[k] white) k = k+1;else if (b[k] blue) { p=p-1; swap b[k], b[p]; } else { // b[k] is red swap b[k], b[h]; h= h+1; k= k+1; } 33

Asymptotically, which algorithm is faster?

nvariant 1	Invariant 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n 0 h k p r reds whites ? blues $ \begin{array}{c cccc} h=0; k=h; p=n; \\ while (k != p) { \\ if (b[k] white) k= k+1; \\ else if (b[k] blue) { \\ p=p-1; \\ swap b[k], b[p]; \\ } \\ else { // b[k] is red \\ swap b[k], b[h]; \\ h=h+1; k= k+1; \\ } \end{array} $
<pre>} }</pre>	}

Asymptotically, which algorithm is faster?

