

Prelim one week from Thursday

1. Visit Exams page of course website, check what time your prelim is, complete assignment P1Conflict ONLY if necessary. So far 54, people completed it!
2. Review session Sunday 1-3. Kimball B11. Next week's recitation will also be a review.
3. A3 is due 3 days from now, on Friday.
4. If appropriate, please check the JavaHyperText before posting a question on the Piazza. You can get your answer instantaneously rather than have to wait for a Piazza answer. "default", "access", "modifier", "private" are well-explained the JavaHyperText .
// invariant: $\mathrm{p}=$ product of $\mathrm{c}[0 . \mathrm{k}-1]$ what's the product when $\mathrm{k}==0$?

Why is the product of an empty bag of values 1 ?

Suppose bag b contains $2,2,5$ and p is its product: 20.
Suppose we want to add 4 to the bag and keep p the product.
We do:

$$
\begin{aligned}
& \text { insert } 4 \text { in the bag; } \\
& p=4^{*} p
\end{aligned}
$$

Suppose bag b is empty and p is its product: what value?
Suppose we want to add 4 to the bag and keep p the product.
We do the same thing:
insert 4 in the bag;

$$
\mathrm{p}=4 * \mathrm{p}
$$

For this to work, the product of the empty bag has to be 1 , since $4=1 * 4$

0 is the identity of + because

$$
0+x=x
$$

1 is the identity of * because
false is the identity of $\|$ because
true is the identity of $\& \&$ because
1 is the identity of gcd because
For any such operator $\mathbf{0}$, that has an identity, $\mathbf{0}$ of the empty bag is the identity of $\mathbf{0}$.
Sum of the empty bag = 0
Product of the empty bag = 1
OR $(\|)$ of the empty bag = false.
gcd of the empty bag $=1$
gcd: greatest common divisor of the elements of the bag

Primitive vs Reference (or class) Types

Primitive Types:
char
boolean
int
float
double
byte
short
long

```
Reference Types:
    Object
    JFrame
    String
    PHD
    int[]
    Animal
    Animal[]
    ... (everything else!)
```

A variable of the type contains:

A value of that type
A pointer to an object of that type

== vs equals

Once you understand primitive vs reference types, there are only two things to know:
$\mathrm{a}==\mathrm{b}$ compares a and b 's values
for a, b of some reference type, use $==$ to determine whether a and b point to the same object.
a.equals(b) compares the two objects using method equals

The value of a.equals(b) depends on the specification of equals in the class!

== vs equals: Reference types

For reference types, p1 == p2
determines whether p1 and p2 contain the same reference (i.e., point to the same object or are both null).
pl.equals(p2) tells whether the objects contain the same information (as defined by whoever implemented equals).

$$
\begin{array}{llll}
\text { p2 } 2=\mathrm{p} 1 & \text { true } & \text { p2.equals }(\mathrm{p} 1) & \text { true } \\
\text { p3 }==\text { p1 } & \text { false } & \text { p3.equals(p1) } & \text { true } \\
\text { p4 }==\text { p1 } & \text { false } & \text { p4.equals(p1) } & \text { NullPointerException! }
\end{array}
$$

Recap: Executing Recursive Methods

1. Push frame for call onto call stack.
2. Assign arg values to pars.
3. Execute method body.
4. Pop frame from stack and (for a function) push return value on the stack.

For function call: When control given back to call, pop return value, use it as the value of the function call.

public int $\mathrm{m}($ int p$)$ \{

int $\mathrm{k}=\mathrm{p}+1$;
return p ;

Recap: Understanding Recursive Methods

1. Have a precise specification
2. Check that the method works in the base case(s).
3. Look at the recursive case(s). In your mind, replace each recursive call by what it does according to the spec and verify correctness.
4. (No infinite recursion) Make sure that the args of recursive calls are in some sense smaller than the pars of the method

Problems with recursive structure

Code will be available on the course webpage.

1. exp - exponentiation, the slow way and the fast way
2. perms - list all permutations of a string
3. tile-a-kitchen - place L-shaped tiles on a kitchen floor
4. drawSierpinski - drawing the Sierpinski Triangle

Computing b^{n} for $n>=0$

Power computation:
$\square b^{0}=1$
\square If $n!=0, b^{n}=b * b^{n-1}$
\square If $n!=0$ and even, $b^{n}=\left(b^{*} b\right)^{n / 2}$

Judicious use of the third property gives far better algorithm

$$
\text { Example: } 3^{8}=(3 * 3) *(3 * 3) *(3 * 3) *(3 * 3)=(3 * 3)^{4}
$$

Computing b^{n} for $\mathrm{n}>=0$

Power computation:
$\square b^{0}=1$

- If $n!=0, b^{n}=b b^{n-1}$
\square If $n!=0$ and even, $b^{n}=\left(b^{*} b\right)^{n / 2}$
$/ * *=b^{* *} \mathrm{n}$. Precondition: $\mathrm{n}>=0 * /$
static int power(double b, int n) \{
if $(\mathrm{n}==0)$ return 1 ;
if $(\mathrm{n} \% 2==0)$ return power $\left(\mathrm{b}^{*} \mathrm{~b}, \mathrm{n} / 2\right)$;
return b * power $(\mathrm{b}, \mathrm{n}-1)$;
\}

Suppose $\mathrm{n}=16$
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0
$16=2 * * 4$
Suppose $\mathrm{n}=2^{* *} \mathrm{k}$
Will make $\mathrm{k}+2$ calls

Computing b^{n} for $\mathrm{n}>=0$

```
If \(\mathrm{n}=2 * * \mathrm{k}\)
k is called the logarithm (to base 2)
of n : \(\mathrm{k}=\log \mathrm{n}\) or \(\mathrm{k}=\log (\mathrm{n})\)
```

$/ * *=b * *$ n. Precondition: $n>=0 * /$
static int power(double b, int $n)\{$
if $(\mathrm{n}==0)$ return 1 ;
if $(\mathrm{n} \% 2==0)$ return power($\mathrm{b}^{*} \mathrm{~b}, \mathrm{n} / 2$);
return b * power(b, n-1);
$\}$

Suppose $\mathrm{n}=16$
Next recursive call: 8
Next recursive call: 4
Next recursive call: 2
Next recursive call: 1
Then 0
$16=2 * * 4$
Suppose $\mathrm{n}=2^{* *} \mathrm{k}$
Will make $\mathrm{k}+2$ calls

Difference between linear and log solutions?

$/ * *=b^{* *}$ n. Precondition: $\mathrm{n}>=0 * /$
static int power(double b, int n) \{
if $(\mathrm{n}==0)$ return 1 ;
return b * power(b, $n-1)$;
\}

Number of recursive calls is n

Number of recursive calls is $\sim \log n$.
$/ * *=b^{* *} \mathrm{n}$. Precondition: $\mathrm{n}>=0 * /$ static int power(double b, int n) \{
if $(\mathrm{n}==0)$ return 1 ;
if $(\mathrm{n} \% 2==0)$ return power $\left(\mathrm{b}^{*} \mathrm{~b}, \mathrm{n} / 2\right)$;
return b * power(b, $n-1)$;
\}

To show difference, we run linear version with bigger n until out of stack space. Then run log one on that n . See demo.

Table of \log to the base 2

15

k	$\mathrm{n}=2^{\wedge} \mathrm{k}$	$\log \mathrm{n} \quad(=\mathrm{k})$	
0	1	0	
1	2		1
2	4		2
3	8	3	
4	16	4	
5	32	5	
6	64	6	
7	128	7	
8	256	8	
9	512		9
10	1024	11	
11	2148		15

Permutations of a String

perms(abc): abc, acb, bac, bca, cab, cba

$$
\begin{aligned}
& \text { abc acb } \\
& \text { bac bca } \\
& \text { cab cba }
\end{aligned}
$$

Recursive definition:
Each possible first letter, followed by all permutations of the remaining characters.

Tiling Elaine's kitchen

Kitchen in Gries's house: 8×8. Fridge sits on one of 1×1 squares His wife, Elaine, wants kitchen tiled with el-shaped tiles -every square except where the refrigerator sits should be tiled.
$/ * *$ tile a 2^{3} by 2^{3} kitchen with 1 square filled. */
public static void tile(int n)

We abstract away keeping track of where the filled square is, etc.

Tiling Elaine's kitchen

/** tile a 2^{n} by 2^{n} kitchen with 1 square filled. */
public static void tile(int n) \{

$$
\text { if }(\mathrm{n}==0) \text { return; }
$$

We generalize to a 2^{n} by 2^{n} kitchen

Tiling Elaine's kitchen

$\mathrm{n}>0$. What can we do to get kitchens of size $2^{\mathrm{n}-1}$ by $2^{\mathrm{n}-1}$

Tiling Elaine's kitchen

$/ * *$ tile a 2^{n} by 2^{n} kitchen with 1 square filled. */
public static void tile(int n) \{

$$
\text { if }(\mathrm{n}==0) \text { return; }
$$

\}
We can tile the upper-right $2^{\mathrm{n}-1}$ by $2^{\mathrm{n}-1}$ kitchen recursively. But we can't tile the other three because they don't have a filled square.
What can we do? Remember, the idea is to tile the kitchen!

Tiling Elaine's kitchen

$/ * *$ tile a 2^{n} by 2^{n} kitchen with 1 square filled. */
public static void tile(int n) \{
if $(\mathrm{n}==0)$ return;
Place one tile so that each kitchen has one square filled;

Tile upper left kitchen recursively;

Tile lower right kitchen recursively;

Sierpinski triangles

S triangle of depth 1: 3 S triangles of depth 0 drawn at the 3 vertices of the triangle
S triangle of depth 2: 3 S triangles of depth 1 drawn at the 3 vertices of the triangle

Sierpinski triangles

S triangle of depth 0: the triangle

Sierpinski triangles of depth d-1

S triangle of depth dat points $\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3$:
3 S triangles of depth d-1 drawn at at p1, p2, p3

Sierpinski triangles

Conclusion

Recursion is a convenient and powerful way to define functions

Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
\square Reduce a big problem to smaller problems of the same kind, solve the smaller problems
\square Recombine the solutions to smaller problems to form solution for big problem
http://codingbat.com/java/Recursion-1

